OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23385–23393
« Show journal navigation

Enhancement of light emission from nanostructured In2O3 via surface plasmons

Dongjiang Qiu, Zhengfen Wan, Xikun Cai, Zijian Yuan, Lian Hu, Bingpo Zhang, Chunfeng Cai, and Huizhen Wu  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23385-23393 (2010)
http://dx.doi.org/10.1364/OE.18.023385


View Full Text Article

Acrobat PDF (1174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the construction of In2O3/Ag/In2O3 sandwich nanostructures and realization of effective coupling with surface plasmon (SP) modes. An enhancement of photoluminescence as large as 278-fold is achieved for the new nanostructures, while only eightfold is obtained from bilayer structures. The advancement of the nanostructures is that both the frequency of incidence photons and the in-plane wavevector of the excited SP modes along each side of the sandwiched nanometer metal layer are identical, thus the momenta mismatch between two SP modes which inevitably occurs in commonly used metal/dielectric bilayer structures is no longer a problem. The fulfillment of the cross coupling and resonance conditions of the two SP modes leads to the tremendous amplification of light emission. Such sandwich nanostructures can be readily extended to other dielectric/metal/dielectric nanomaterial combinations and identified as technologically useful for SP mediated light emitting devices.

© 2010 OSA

1. Introduction

Surface plasmons (SPs) have attracted increasing attention because of their fundamental importance and extensive applications in sensing [1

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

4

4. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]

], surface enhanced spectrum [5

5. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008). [CrossRef]

], enhancing transmission [6

6. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000). [CrossRef]

,7

7. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]

], nanowaveguiding [1

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

,4

4. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]

], and bright light sources in nanoscale dimensions [8

8. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]

12

12. D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80(20), 3679–3681 (2002). [CrossRef]

]. The enhancement of internal quantum efficiency of light emitting materials and devices by SP coupling was realized with various metal/dielectric bilayer structures [13

13. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]

17

17. K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009). [CrossRef]

], such as Ag/InGaN [13

13. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]

] and Al/ZnO [15

15. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005). [CrossRef]

]. However, the SP mediated emission enhancement ratios (EERs) of the bilayer structures reported hitherto were not high enough and many emission amplifications were limited to the backward direction in which light emits via a transparent substrate into the free space [12

12. D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80(20), 3679–3681 (2002). [CrossRef]

,13

13. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]

,16

16. J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D 41(20), 205101 (2008). [CrossRef]

]. For example, Okamoto et al observed a 14-fold enhancement in peak photoluminescence (PL) intensity from the Ag-capped InGaN quantum wells [13

13. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]

]. Lei and Ong [15

15. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005). [CrossRef]

] and Cheng et al [14

14. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008). [CrossRef]

] showed twofold and threefold band edge emission enhancement from ZnO using Al and Ag cap-layers, respectively. Lai et al demonstrated a 10-fold enhancement of the near-band-edge (NBE) emission of ZnO thin films capped with an 89-nm-thick Ag layer, but negligible enhancement was observed on Au-coated ZnO films [15

15. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005). [CrossRef]

]. Liu et al realized 12-fold and twofold emission enhancements from ZnO films by sputtering Pt nanopatterns and Pt films onto ZnO films, respectively [17

17. K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009). [CrossRef]

]. Clearly, the realized maximum EER for metal/dielectric bilayer structures reported hitherto was 45-fold ZnO/Ag [16

16. J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D 41(20), 205101 (2008). [CrossRef]

]. Questions still remain on the further elevation of EER of the SP mediated light emission. It is noted the metal in a metal/dielectric bilayer structure supports two SP modes that are associated with each metal surface [1

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

]. For a given frequency, these two modes have different in-plane wavevectors and can hardly interact. Hence, one cannot anticipate very high light emission enhancement for such metal/dielectric bilayer designs. In addition, the metal in a metal/dielectric bilayer structure is prone to suffering from surface oxidation which shall lead to the degradation of light-emitting device performance. To solve such a problem of wavevector mismatch, we propose a dielectric/metal/dielectric sandwich nanostructure model rather than a commonly used metal/dielectric bilayer structure by which strong cross coupling between the two SP modes and consequently much higher internal quantum efficiency is achieved.

Here we report on the construction of In2O3/Ag/In2O3 sandwich nanostructures and demonstration of their ultra-giant PL enhancement. In this work Ag is selected as a metal nanoparticle material because of the lowest losses of SP energy in the visible spectrum and wide utilization in the study of metal/dielectric bilayer structures [1

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

,13

13. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]

16

16. J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D 41(20), 205101 (2008). [CrossRef]

], while In2O3 is selected as the dielectric material because it is a distinctive semiconductor with a wide direct band gap (3.5-3.6 eV) [18

18. F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingo-lani, and R. Rinaldi, “Electronic structure of indium-tin-oxide flms fabricated by reactive electron-beam deposition,” Phys. Rev. B 72(8), 085437 (2005). [CrossRef]

,19

19. F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang, “Large-scale growth of In2O3 nanowires and their optical properties,” Nanotechnology 15(5), 596–600 (2004). [CrossRef]

], a high electron mobility (160 cm2V−1s−1) [18

18. F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingo-lani, and R. Rinaldi, “Electronic structure of indium-tin-oxide flms fabricated by reactive electron-beam deposition,” Phys. Rev. B 72(8), 085437 (2005). [CrossRef]

,20

20. R. L. Weiher, “Electrical properties of single crystals of indium oxide,” J. Appl. Phys. 33(9), 2834–2839 (1962). [CrossRef]

], and extensive applications in transparent electronics [21

21. I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films – basic optical-properties and applications to energy-efficient windows,” J. Appl. Phys. 60(11), R123–R159 (1986). [CrossRef]

23

23. S. Ju, J. Li, J. Liu, P. C. Chen, Y. G. Ha, F. Ishikawa, H. Chang, C. Zhou, A. Facchetti, D. B. Janes, and T. J. Marks, “Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry,” Nano Lett. 8(4), 997–1004 (2008). [CrossRef]

], but In2O3 was rarely used as a robust luminescent material for light emitting device applications yet. We exhilaratingly find that, an NBE-EER as large as 278-fold is readily achieved from the In2O3/Ag/In2O3 sandwich nanostructures referring to the light emission from the bare In2O3 monolayer samples, which is the largest light emission enhancement ever reported to the authors’ knowledge. The realization of the giant enhancement of light emitting efficiency in In2O3 via SP mediation will render the feasibility to integrate its unique electrical and optical functions into a single chip. Moreover, our proposed sandwich nanostructure model can be readily extended to other dielectric/metal/dielectric material combinations and would lead to a new class of highly efficient light emitting sources.

2. Experiment

For the fabrication of In2O3/Ag/In2O3 sandwich nanostructures on Si(100) substrates, both of In2O3 layers on and under the Ag nanometer layer were grown by rf magnetron sputtering using an In2O3 ceramic target (purity 99.99%) as a source material, while the Ag layer was deposited by thermal evaporation using silver dots (purity 99.99%) as the evaporating material. An SAJS-450 sputter-coater and an SAZF-450 evaporator (Shenyang Tengao Vacuum Technology Co.) were used for the deposition of In2O3 and Ag thin films, respectively. A fixed thickness of 50 nm was designed for all In2O3 layers, while a variable thickness of the Ag layer (9, 15, 21 and 30 nm) was adopted to evaluate the influence of the metal-layer thickness on the SP mediated emission enhancement. During In2O3 sputtering or Ag evaporation, the substrate was set at room temperature and the sample holder was kept rotating to assure an isotropic distribution in the thickness for each layer of the sandwich nanostructures. Sputtering was performed in a pure Ar (99.999%) ambient while evaporation was carried out under a vacuum condition (prior to sputtering or evaporating a base pressure of 10−4 Pa was attained in the respective growth chamber). The flow rate of Ar gas and the power of rf were set to be 20 sccm and 100 W, respectively, which induced a sustained sputtering pressure of 3 Pa and a growth rate of 6 nm/min. The growth rate was monitored using a crystal oscillator. To clarify the effect of the In2O3 cap-layer in the In2O3/Ag/In2O3 sandwich nanostructures on the enhancement of PL intensity, PL measurements for a bare In2O3 monolayer and the Ag/In2O3 bilayer structures were firstly carried out. Then we deposited an In2O3 cap-layer onto each of the Ag/In2O3 bilayer samples to form the In2O3/Ag/In2O3 sandwich nanostructures and repeated PL measurements. Schematic images of the three structures and PL measurement configurations are illustrated in Fig. 1
Fig. 1 Schematic images of three structures on Si substrates, the layer thicknesses, as well as the excitation and PL signal collection configurations are illustrated:(a) an In2O3 monolayer sample, (b) a Ag /In2O3 bilayer sample, (c) an In2O3/Ag/In2O3 sandwich nanostructure sample.
.

A HITACHI S4800 field emission scanning electron microscope (FESEM) was employed to characterize the in-plane morphologies and the cross sections of the In2O3 monolayer, Ag/In2O3 bilayer and In2O3/Ag/In2O3 sandwich nanostructures. PL measurements were carried out on an FLS920 fluorophotometer using a xenon lamp as the excitation source in which a 300 nm excitation line and an incidence angle of 45° were selected. The power of the excitation for PL measurements was kept same (5 mW) when comparing the PL intensities from all the samples so that a direct EER comparison can be made among the three structures. By employing a 341 nm optical filter, PL signals were detected using a Red PMT equipped spectrometer (Acton SP2500i) from the top side geometry of the samples.

3. Results and discussion

Figure 2
Fig. 2 The top view FESEM images: (a) an In2O3(50 nm) monolayer sample and (b) a Ag(21 nm)/In2O3(50 nm) bilayer sample. The inset in the image (a) is an amplified view of the In2O3(50 nm) monolayer sample.
shows typical top view FESEM images for an In2O3 (50 nm) monolayer sample and a Ag(21 nm)/In2O3(50 nm) bilayer sample grown on Si substrates. Figure 2(a) is a surface morphology of the In2O3 monolayer sample and the inset displays a high resolution image. Obviously, the surface of In2O3 monolayer sample is reasonably smooth and uniform. However, as shown in Fig. 2(b), when covered with a 21 nm Ag layer the Ag(21 nm)/In2O3(50 nm) bilayer sample becomes much rougher. AFM measurement (not shown) demonstrated a typical root mean square (RMS) roughness of about 3 and 10 nm for the In2O3 monolayer sample and the Ag(21 nm)/In2O3(50 nm) bilayer sample, respectively.

Figure 3
Fig. 3 The top view and cross-sectional FESEM images for the In2O3(50 nm)/Ag/In2O3(50 nm) sandwich nanostructures: (a) and (b) for the In2O3(50 nm)/Ag(15 nm)/In2O3(50 nm) sample; (c) and (d) for the In2O3(50 nm)/Ag(21 nm)/In2O3(50 nm) sample.
shows typical top view and cross-sectional FESEM images for two In2O3(50 nm)/Ag/In2O3(50 nm) sandwich nanostructure samples. After capping an In2O3(50 nm) layer onto each of the bilayer samples to form the In2O3(50 nm)/Ag/In2O3(50 nm) sandwich nanostructures, the surface morphology changes greatly and presents the structures of large quantity islands with horizontal dimensions in hundreds nanometers as shown in Fig. 3(a)3(d). It is found that with increasing the Ag thickness from 15 to 21 nm, some islands merge into large ones and the island density becomes smaller, as shown in Fig. 3(a) and 3(c). The cross section views of the sandwich nanostructures display the islands are in shape of oval-shaped pebbles with vertical dimensions in the range of 50 ~100 nm. It is known the In2O3 thin films are very hard and robust. Considering the facts that the islands are large in horizontal dimensions (100~500 nm) and relatively thin in vertical dimensions (50~100 nm) and the morphology evolution shown in Fig. 2 and 3 is closely correlated, we can conclude the metallic Ag layers are largely sandwiched by the bottom and top In2O3 thin films. The quasi-periodically distributed islands (or a roughened surface) would act as an effectual Prague grating and enhance the power of light extraction via scattering.

From Fig. 4(b) one finds that the maximal NBE-EER for the Ag/In2O3 bilayer structures is only eightfold, which is a typical result compared with that reported in the literatures [14

14. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008). [CrossRef]

,15

15. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005). [CrossRef]

,17

17. K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009). [CrossRef]

]. The small EER values for the Ag/In2O3 bilayer structures can be attributed to the fact that the Ag layer in a Ag/In2O3 bilayer structure supports two different SP modes, one supports Ag/In2O3 while the other supports Air/In2O3. For a given frequency, these two modes have different in-plane wavevectors (momenta) and do not interact. To realize a strong cross coupling between the two SP modes and a resultant higher internal quantum efficiency, we capped an In2O3(50 nm) layer onto each of the above Ag/In2O3(50 nm) bilayer structures and constructed the In2O3(50 nm)/Ag/In2O3(50 nm) sandwich nanostructures.

To explore the mechanisms of the observed ultra-giant enhancement of light emission from the In2O3(50 nm)/Ag/In2O3(50 nm) sandwich nanostructures, we also deduce the EER spectra for both of the bilayer and the sandwich nanostructures from Figs. 4(a) and 5(a), respectively. The deduced EER spectra are illustrated in Figs. 6(a)
Fig. 6 (a) and (b) are the EER spectra of the Ag/In2O3(50 nm) and In2O3(50 nm)/Ag/In2O3(50 nm) samples derived from Figs. 4(a) and 5(a), using the definitionI(Ag/In2O3)/I(In2O3) and I(In2O3/Ag/In2O3)/I(In2O3), respectively. (c) and (d) show the peak intensities and the corresponding peak positions of the b labeled EER bands from spectra (a) and (b), respectively.
and 6(b). It can be clearly distinguished that the b labeled bands in Fig. 6(b) dominate the EER spectra for the In2O3(50 nm)/Ag/In2O3(50 nm) sandwich nanostructures while the a labeled bands in Fig. 6(a) dominate the EER spectra for the Ag/In2O3 bilayer structures. The a bands, with the peak position shift of (470 ~473 nm) in Fig. 6(a) and with the shift of (464 ~467 nm) in Fig. 6(b) respectively, are ascribed to the origin of oxygen-vacancy associated deep-level defects and the enhancement via energy coupling with the SP modes. However, the b bands in the Figs. 6(a) and 6(b) obviously deviate from the NBE emission peak of In2O3 (362 nm). The b bands (395~399 nm) shown in Figs. 6(b) for the sandwich nanostructures are evidently closer to the NBE emission peak of In2O3 (362 nm) than that for the bilayer structures (413~416 nm) shown in Figs. 6(a). The difference between the two b bands in the two structures is as large as about 17nm. This observation indicates the SP resonance energy at the Ag/In2O3 interfaces for the sandwich nanostructures matches better to the photon energy of the NBE emission than that of the bilayer structures, considering the modulation effect arisen from the changes of Ag layer thickness and surface roughness of the sandwich nanostructures. By comparing Fig. 6(b) with Fig. 5(a) where the NBE emissions of In2O3 (~362 nm) dominate all the PL spectra, it is found the EER of the NBE emission for the sandwich nanostructures does not reach its maximum. It implies that the NBE-EER of In2O3 could be further elevated as long as the band-gap energy of In2O3 is tailored via doping engineering and/or the SP resonance energy is further tuned by changing the Ag layer thickness and the surface roughness.

4. Conclusion

In summary, we have shown that by constructing the In2O3/Ag/In2O3 sandwich nanostructures, an ultra-giant NBE-EER of 278-fold that is about 35 times of magnitude larger than that of the Ag/In2O3 bilayer structures, is readily achieved. The mechanism for such ultra-giant emission enhancement is that both the frequency of incidence photons and the in-plane wavevector of the SP modes along each side of the sandwiched Ag layer are identical. The fulfillment of the cross coupling and resonance conditions of the two SP modes leads to the tremendous amplification of light emission. The formation of In2O3/Ag/In2O3 sandwich nanostructures also allows the SP resonance modes at the Ag/In2O3 interfaces move to higher energy and becomes more adjacent to the NBE emission energy of In2O3 than that of the Ag/In2O3 bilayer structures, which facilitates the enhancement of NBE emission and simultaneously suppresses the deep-level defect emissions of In2O3. The proposed dielectric/metal/dielectric sandwich nanostructure model has a variety of advantages over the commonly adopted metal/dielectric bilayer nanostructures. For example, the sandwiched metal layers can now be effectively protected and are no longer suffered from degradation due to surface oxidation which is extremely important to improve the performance and prolong the lifetime of the SP mediated light emitting devices. Moreover, the presented sandwich nanostructures can be extended to other metal-dielectric material combinations and could play an important role in the fabrication of highly efficient SP mediated light emitting devices.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 10974174, 50472058 and 91021020), National Basic research Program of China under Grant No. 2011CB925603 and the Natural Science Foundation of Zhejiang Province, China (No. Y4080171 and Z6100117).

References and links

1.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

2.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]

3.

G. Socol, E. Axente, C. Ristoscu, F. Sima, A. Popescu, N. Stefan, I. N. Mihailescu, L. Escoubas, J. Ferreira, S. Bakalova, and A. Szekeres, “Enhanced gas sensing of Au nanocluster-doped or –coated zinc oxide thin films,” J. Appl. Phys. 102(8), 083103 (2007). [CrossRef]

4.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]

5.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008). [CrossRef]

6.

I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000). [CrossRef]

7.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]

8.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]

9.

D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007). [CrossRef]

10.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002). [CrossRef]

11.

S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182–184 (2004). [CrossRef]

12.

D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80(20), 3679–3681 (2002). [CrossRef]

13.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]

14.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008). [CrossRef]

15.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005). [CrossRef]

16.

J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D 41(20), 205101 (2008). [CrossRef]

17.

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009). [CrossRef]

18.

F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingo-lani, and R. Rinaldi, “Electronic structure of indium-tin-oxide flms fabricated by reactive electron-beam deposition,” Phys. Rev. B 72(8), 085437 (2005). [CrossRef]

19.

F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang, “Large-scale growth of In2O3 nanowires and their optical properties,” Nanotechnology 15(5), 596–600 (2004). [CrossRef]

20.

R. L. Weiher, “Electrical properties of single crystals of indium oxide,” J. Appl. Phys. 33(9), 2834–2839 (1962). [CrossRef]

21.

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films – basic optical-properties and applications to energy-efficient windows,” J. Appl. Phys. 60(11), R123–R159 (1986). [CrossRef]

22.

K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Sol. Energy Mater. Sol. Cells 64(2), 115–134 (2000). [CrossRef]

23.

S. Ju, J. Li, J. Liu, P. C. Chen, Y. G. Ha, F. Ishikawa, H. Chang, C. Zhou, A. Facchetti, D. B. Janes, and T. J. Marks, “Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry,” Nano Lett. 8(4), 997–1004 (2008). [CrossRef]

24.

H. Cao, X. Qiu, Y. Liang, Q. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003). [CrossRef]

25.

W. S. Seo, H. H. Jo, K. Lee, and J. T. Park, “Preparation and optical properties of highly crystalline, colloidal, and size controlled indium oxide nanoparticles,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 795–797 (2003). [CrossRef]

26.

H. Zhou, W. Cai, and L. Zhang, “Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica,” Appl. Phys. Lett. 75(4), 495–497 (1999). [CrossRef]

27.

C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, “Catalytic Growth of Semiconducting In2O3 Nanofibers,” Adv. Mater. (Deerfield Beach Fla.) 13(17), 1330–1333 (2001). [CrossRef]

28.

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006). [CrossRef] [PubMed]

29.

E. D. Palik, Handbook of Optical Constants of solid, (Academic, London, 1985).

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5230) Optoelectronics : Photoluminescence
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 9, 2010
Revised Manuscript: September 4, 2010
Manuscript Accepted: September 9, 2010
Published: October 21, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Dongjiang Qiu, Zhengfen Wan, Xikun Cai, Zijian Yuan, Lian Hu, Bingpo Zhang, Chunfeng Cai, and Huizhen Wu, "Enhancement of light emission from nanostructured In2O3 via surface plasmons," Opt. Express 18, 23385-23393 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23385


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. G. Socol, E. Axente, C. Ristoscu, F. Sima, A. Popescu, N. Stefan, I. N. Mihailescu, L. Escoubas, J. Ferreira, S. Bakalova, and A. Szekeres, “Enhanced gas sensing of Au nanocluster-doped or –coated zinc oxide thin films,” J. Appl. Phys. 102(8), 083103 (2007). [CrossRef]
  4. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  5. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008). [CrossRef]
  6. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000). [CrossRef]
  7. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  8. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  9. D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007). [CrossRef]
  10. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002). [CrossRef]
  11. S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182–184 (2004). [CrossRef]
  12. D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80(20), 3679–3681 (2002). [CrossRef]
  13. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]
  14. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008). [CrossRef]
  15. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005). [CrossRef]
  16. J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D 41(20), 205101 (2008). [CrossRef]
  17. K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009). [CrossRef]
  18. F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingo-lani, and R. Rinaldi, “Electronic structure of indium-tin-oxide flms fabricated by reactive electron-beam deposition,” Phys. Rev. B 72(8), 085437 (2005). [CrossRef]
  19. F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang, “Large-scale growth of In2O3 nanowires and their optical properties,” Nanotechnology 15(5), 596–600 (2004). [CrossRef]
  20. R. L. Weiher, “Electrical properties of single crystals of indium oxide,” J. Appl. Phys. 33(9), 2834–2839 (1962). [CrossRef]
  21. I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films – basic optical-properties and applications to energy-efficient windows,” J. Appl. Phys. 60(11), R123–R159 (1986). [CrossRef]
  22. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Sol. Energy Mater. Sol. Cells 64(2), 115–134 (2000). [CrossRef]
  23. S. Ju, J. Li, J. Liu, P. C. Chen, Y. G. Ha, F. Ishikawa, H. Chang, C. Zhou, A. Facchetti, D. B. Janes, and T. J. Marks, “Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry,” Nano Lett. 8(4), 997–1004 (2008). [CrossRef]
  24. H. Cao, X. Qiu, Y. Liang, Q. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003). [CrossRef]
  25. W. S. Seo, H. H. Jo, K. Lee, and J. T. Park, “Preparation and optical properties of highly crystalline, colloidal, and size controlled indium oxide nanoparticles,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 795–797 (2003). [CrossRef]
  26. H. Zhou, W. Cai, and L. Zhang, “Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica,” Appl. Phys. Lett. 75(4), 495–497 (1999). [CrossRef]
  27. C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, “Catalytic Growth of Semiconducting In2O3 Nanofibers,” Adv. Mater. (Deerfield Beach Fla.) 13(17), 1330–1333 (2001). [CrossRef]
  28. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006). [CrossRef] [PubMed]
  29. E. D. Palik, Handbook of Optical Constants of solid, (Academic, London, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited