Ultra-low loss Si_{3}N_{4} waveguides with low nonlinearity and high power handling capability |
Optics Express, Vol. 18, Issue 23, pp. 23562-23568 (2010)
http://dx.doi.org/10.1364/OE.18.023562
Acrobat PDF (1068 KB)
Abstract
We investigate the nonlinearity of ultra-low loss Si_{3}N_{4}-core and SiO_{2}-cladding rectangular waveguides. The nonlinearity is modeled using Maxwell’s wave equation with a small amount of refractive index perturbation. Effective n_{2}
is used to describe the third-order nonlinearity, which is linearly proportional to the optical intensity. The effective n_{2}
measured using continuous-wave self-phase modulation shows agreement with the theoretical calculation. The waveguide with 2.8-μm wide and 80-nm thick Si_{3}N_{4} core has low loss and high power handling capability, with an effective n_{2}
of about
© 2010 OSA
1. Introduction
1. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n_2 in various types of telecommunication fiber at 155 µm,” Opt. Lett. 21(24), 1966–1968 (1996). [CrossRef] [PubMed]
2. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007). [CrossRef] [PubMed]
4. R. S. Grant, “Effective non-linear coefficients of optical waveguides,” Opt. Quantum Electron. 28(9), 1161–1173 (1996). [CrossRef]
5. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007). [CrossRef] [PubMed]
2. Effective n_{2} coefficient
4. R. S. Grant, “Effective non-linear coefficients of optical waveguides,” Opt. Quantum Electron. 28(9), 1161–1173 (1996). [CrossRef]
5. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007). [CrossRef] [PubMed]
7. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008). [CrossRef]
3. Measurement of waveguide nonlinearity
1. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n_2 in various types of telecommunication fiber at 155 µm,” Opt. Lett. 21(24), 1966–1968 (1996). [CrossRef] [PubMed]
8. S. V. Chernikov and J. R. Taylor, “Measurement of normalization factor of n(_{2}) for random polarization in optical fibers,” Opt. Lett. 21(19), 1559–1561 (1996). [CrossRef] [PubMed]
1. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n_2 in various types of telecommunication fiber at 155 µm,” Opt. Lett. 21(24), 1966–1968 (1996). [CrossRef] [PubMed]
1. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n_2 in various types of telecommunication fiber at 155 µm,” Opt. Lett. 21(24), 1966–1968 (1996). [CrossRef] [PubMed]
8. S. V. Chernikov and J. R. Taylor, “Measurement of normalization factor of n(_{2}) for random polarization in optical fibers,” Opt. Lett. 21(19), 1559–1561 (1996). [CrossRef] [PubMed]
1. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n_2 in various types of telecommunication fiber at 155 µm,” Opt. Lett. 21(24), 1966–1968 (1996). [CrossRef] [PubMed]
10. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008). [CrossRef] [PubMed]
11. H. Schmidt, M. Gupta, and M. Bruns, “Nitrogen diffusion in amorphous silicon nitride isotope multilayers probed by neutron reflectometry,” Phys. Rev. Lett. 96(5), 055901 (2006). [CrossRef] [PubMed]
4. Conclusions
Acknowledgements
References and links
1. | A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n_2 in various types of telecommunication fiber at 155 µm,” Opt. Lett. 21(24), 1966–1968 (1996). [CrossRef] [PubMed] |
2. | Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007). [CrossRef] [PubMed] |
3. | J. F. Bauters, M. J. R. Heck, D. John, M.-C. Tien, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. Bowers, “Ultra-low loss silica-based waveguides with millimeter bend radius,” in ECOC(Torino, Italy, 2010). |
4. | R. S. Grant, “Effective non-linear coefficients of optical waveguides,” Opt. Quantum Electron. 28(9), 1161–1173 (1996). [CrossRef] |
5. | C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007). [CrossRef] [PubMed] |
6. | K. Okamoto, Fundamentals of optical waveguides (Academic Press, 2006). |
7. | A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008). [CrossRef] |
8. | S. V. Chernikov and J. R. Taylor, “Measurement of normalization factor of n(_{2}) for random polarization in optical fibers,” Opt. Lett. 21(19), 1559–1561 (1996). [CrossRef] [PubMed] |
9. | A. Lamminpaa, T. Niemi, E. Ikonen, P. Marttila, and H. Ludvigsen, ““Effects of dispersion on nonlinearity measurement of optical fibers,” Opt. Fiber Technol,” Mater. Devices Syst. 11, 278–285 (2005). |
10. | K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008). [CrossRef] [PubMed] |
11. | H. Schmidt, M. Gupta, and M. Bruns, “Nitrogen diffusion in amorphous silicon nitride isotope multilayers probed by neutron reflectometry,” Phys. Rev. Lett. 96(5), 055901 (2006). [CrossRef] [PubMed] |
OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(260.2065) Physical optics : Effective medium theory
(250.4390) Optoelectronics : Nonlinear optics, integrated optics
ToC Category:
Integrated Optics
History
Original Manuscript: August 17, 2010
Revised Manuscript: October 22, 2010
Manuscript Accepted: October 22, 2010
Published: October 26, 2010
Citation
Ming-Chun Tien, Jared F. Bauters, Martijn J. R. Heck, Daniel J. Blumenthal, and John E. Bowers, "Ultra-low loss Si_{3}N_{4} waveguides with low nonlinearity and high power handling capability," Opt. Express 18, 23562-23568 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23562
Sort: Year | Journal | Reset
References
- A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n_2 in various types of telecommunication fiber at 155 µm,” Opt. Lett. 21(24), 1966–1968 (1996). [CrossRef] [PubMed]
- Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007). [CrossRef] [PubMed]
- J. F. Bauters, M. J. R. Heck, D. John, M.-C. Tien, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. Bowers, “Ultra-low loss silica-based waveguides with millimeter bend radius,” in ECOC(Torino, Italy, 2010).
- R. S. Grant, “Effective non-linear coefficients of optical waveguides,” Opt. Quantum Electron. 28(9), 1161–1173 (1996). [CrossRef]
- C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007). [CrossRef] [PubMed]
- K. Okamoto, Fundamentals of optical waveguides (Academic Press, 2006).
- A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008). [CrossRef]
- S. V. Chernikov and J. R. Taylor, “Measurement of normalization factor of n(2) for random polarization in optical fibers,” Opt. Lett. 21(19), 1559–1561 (1996). [CrossRef] [PubMed]
- A. Lamminpaa, T. Niemi, E. Ikonen, P. Marttila, and H. Ludvigsen, ““Effects of dispersion on nonlinearity measurement of optical fibers,” Opt. Fiber Technol,” Mater. Devices Syst. 11, 278–285 (2005).
- K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008). [CrossRef] [PubMed]
- H. Schmidt, M. Gupta, and M. Bruns, “Nitrogen diffusion in amorphous silicon nitride isotope multilayers probed by neutron reflectometry,” Phys. Rev. Lett. 96(5), 055901 (2006). [CrossRef] [PubMed]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.