OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23620–23625
« Show journal navigation

Optical properties of DAST in the THz range

Paul D. Cunningham and L. Michael Hayden  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23620-23625 (2010)
http://dx.doi.org/10.1364/OE.18.023620


View Full Text Article

Acrobat PDF (1114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the far-infrared properties of the organic crystal DAST, a popular terahertz emitter, from 0.6 – 12 THz through use of a THz spectrometer incorporating air-plasma THz generation and electro-optic (EO) sampling in a poled EO polymer. We identify absorption features at 1.1, 3.1, 5.2, 7.1, 8.4, 11, and 12.3 THz and at 1.1, 1.3, 1.6, 2.2, 3, 5.2, 7.2, 9.6 and 11.7 THz for a-axis and b-axis polarized THz radiation respectively. These results allow for more accurate prediction of the optimum crystal thickness for broadband THz emission via optical rectification and difference frequency generation.

© 2010 OSA

1. Introduction

Recent advances in terahertz (THz) generation from air plasmas has allowed for broadband THz time-domain spectroscopy (TDS) of materials useful for THz emission and detection [1

1. J. Liu and X.-C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106(2), 023107 (2009). [CrossRef]

]. This new capability calls for the re-examination of materials of interest whose properties were previously studied over a very narrow band. The organic EO crystal 4-N,N-dimethylamino-4’-N’-methyl stilbazolium tosylate (DAST) has drawn attention as a THz emitter since 1992 [2

2. X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992). [CrossRef]

] due to its large nonlinearity. A wealth of work has been conducted by the Gunter group on the nonlinear optical [3

3. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996). [CrossRef]

] and far-infrared properties [4

4. C. Bosshard, R. Spreiter, L. Degiorgi, and P. Gunter, “Infrared and Raman spectroscopy of the organic crystal DAST: Polarization dependence and contribution of molecular vibrations to the linear electro-optic effect,” Phys. Rev. B 66(20), 205107 (2002). [CrossRef]

] of DAST and its applicability as a THz emitter at long pump wavelengths [5

5. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Gunter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822–1835 (2006). [CrossRef]

]. DAST has also drawn recent interest as a tunable source of high power THz radiation spanning a very broad bandwidth using difference frequency mixing of two lasers [6

6. T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984–5988 (2004). [CrossRef]

8

8. J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008). [CrossRef] [PubMed]

]. Very recently, it has also been used for free-space electro-optic sampling (FSEOS) of broadband THz pulses [9

9. M. Martin, J. Mangeney, P. Crozat, and P. Mounaix, “Optical phase detection in a 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate crystal for terahertz time domain spectroscopy system at 1.55 µm wavelength,” Appl. Phys. Lett. 97(11), 111112 (2010). [CrossRef]

]. The success of DAST as a bright, broadband THz source has led to a recent resurgence of research on organic crystalline THz emitters in general, many of which are DAST derivatives with similar chemical structures and optical properties [10

10. T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz properties of a new organic crystal, 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932–L934 (2005). [CrossRef]

13

13. K. Akiyama, S. Okada, Y. Goto, and H. Nakanishi, “Modification of DAST-based compounds toward enhanced terahertz-wave generation,” J. Cryst. Growth 311(3), 953–955 (2009). [CrossRef]

].

Though DAST is a monoclinic crystal of point group m with 10 non-zero electro-optic coefficients, only four are larger than 1 pm/V [3

3. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996). [CrossRef]

]. Typically, crystals are produced in the ab-plane. For light polarized along the a- or b-axis the THz emission via optical rectification (OR) will be polarized along the a-axis [16

16. X. Zheng, C. V. McLaughlin, P. D. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58–76 (2007). [CrossRef]

]. For this reason, it is important to know the THz refractive index along the a-axis of DAST. On the other hand, incident light with an arbitrary polarization in the ab-plane will result in a THz polarization along both the a- and the b-axis. Few studies have examined the THz properties of both crystallographic axes.

2. Results and discussion

We used a 150 mm focal length lens to focus 1 mJ, 45-fs, 800 nm pulses through a 100 μm thick type-I β-barium borate crystal to form a filament for air-plasma THz generation via mixing of the fundamental and second harmonic [19

19. X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006). [CrossRef] [PubMed]

]. Though the precise mechanism of THz generation in ionized-air plasmas is a current subject of debate [20

20. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007). [CrossRef] [PubMed]

,21

21. M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett. 29(10), 1120–1122 (2004). [CrossRef] [PubMed]

], air plasmas nonetheless provide bright sources of broadband THz radiation. A 100 μm thick 26 pm/V 40%-Lemke / 60%-APC poled polymer sensor [16

16. X. Zheng, C. V. McLaughlin, P. D. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58–76 (2007). [CrossRef]

] enabled detection of continuous bandwidth up to 12 THz without the need to form a secondary plasma for detection. THz TDS was performed on a 160 μm thick 2.5 mm x 1.8 mm DAST crystal (Rainbow Photonics) oriented such that the THz polarization was incident upon either the a-axis or the b-axis of the sample. An iris was placed directly in front of the sample and closed so that the THz radiation only sampled the DAST crystal. As a reference, the transmission through the unobstructed iris was measured [Fig. 1(a)
Fig. 1 THz transmission through an unobstructed iris (black) and (a) corresponding transmission through the a-axis of a 160 μm thick DAST crystal (red). There are absorption features centered at 1.1, 3.1, 5.2, 7.1, and 8.4 THz (arrows). (b) The transmission through the b-axis shows absorption features centered at 1.1, 1.3, 1.6, 3.0, 5.2, 7.2, and 9.6 THz (arrows).
, black line]. The iris had little effect on the overall THz amplitude, as the focused spot size was about 800 μm. The THz transmission through the a-axis of the DAST sample [Fig. 1(a), red line] shows five distinct features over this bandwidth at 1.1, 3.1, 5.2, 7.1, 8.4, and weak absorptions at 11, and 12.3 THz. When DAST is used as a THz emitter, these same features are observed [6

6. T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984–5988 (2004). [CrossRef]

,8

8. J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008). [CrossRef] [PubMed]

,16

16. X. Zheng, C. V. McLaughlin, P. D. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58–76 (2007). [CrossRef]

18

18. K. Suizu, T. Shibuya, H. Uchida, and K. Kawase, “Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal,” Opt. Express 18(4), 3338–3344 (2010). [CrossRef] [PubMed]

]. Transmission through the b-axis [Fig. 1(b), red line] shows seven features centered at 1.1, 1.3, 1.6, 3.0, 5.2, 7.2, and 9.6 THz and a weak absorption at 11.7 THz.

We modeled the transmission through an optically thick monolithic sample as,
T˜(ν)=2n˜2(ν)(n˜1(ν)+n˜3(ν))(n˜1(ν)+n˜2(ν))(n˜2(ν)+n˜3(ν))ei(n˜2(ν)n˜1(ν))l2ω/c,
(1)
where ω2πν, c is the speed of light, l2 is the thickness of the sample, and n˜2(ν), n˜1(ν), and n˜3(ν) are the frequency-dependent complex indices of refraction of the sample and the mediums before and after it respectively. By minimizing the error function proposed by Duvillaret et al. [22

22. L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996). [CrossRef]

] the index of refraction and absorption coefficients were determined. Unfortunately, the measured absorption features near 8.4 & 12.3 THz for the a-axis and 9.6 & 11.7 THz for the b-axis slightly exceed the maximum measureable absorption coefficient as defined by the dynamic range [23

23. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005). [CrossRef] [PubMed]

]. However, it is still clear that five distinct absorption bands exist in the data for the a-axis and seven for the b-axis. Despite the numerous absorption bands, the THz refractive index of the a-axis of DAST is relatively flat across the band after the large feature at 1.1 THz.

The dielectric function can be modeled using a collection of Lorentz oscillators,
ε˜(ω)=εEL+jεSTjΩj2(Ωj2ω2)2iγjω,
(2)
where εEL is the background dielectric constant, Ωj is the resonance frequency, εSTj describes the oscillator strength, and γj is the line width. The sum is taken over the number of resonant features, five in the case of the a-axis and seven for the b-axis of DAST. Equation (2) is fit to the measured complex dielectric function ε˜(ω)=(n(ω)+2icα(ω)/ω)2, where c is the speed of light and α is the power absorption coefficient. To recover the index of refraction and absorption coefficient, given ε˜(ν)=ε1(ν)+iε2(ν), we use the relations

n(ν)=ε12(ν)+ε22(ν)+ε1(ν)2α(ν)=2ωcε12(ν)+ε22(ν)ε1(ν)2.
(3)

The fit results are summarized in Table 1

Table 1. Fit parameters of DAST dielectric function to Lorentz oscillator model

table-icon
View This Table
. We identify resonances centered at 1.1, 3.1, 5.2, 7.1, 8.4, 11, and 12.3 THz for the a-axis of DAST. The resonances at 1.1 and 3.1 THz are similar in center frequency and line width to those reported by Schneider, et al. [5

5. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Gunter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822–1835 (2006). [CrossRef]

] The higher frequency features have previously been observed via FTIR [7

7. H. Ito, K. Miyamoto, and H. Minamide, “Ultra-Broadband, Frequency-agile THz-wave Generator and its Applications,” in Advanced Solid-State Photonics, OSA Tech. Digest Ser. (Nara, Japan, 2008), p. WD1.

], Raman spectroscopy [24

24. T. Vijayakumar, I. H. Joe, C. P. R. Nair, M. Jazbinsek, and V. S. Jayakumar, “Electron-phonon coupling and vibrational modes contributing to linear electro-optic effect of the efficient NLO chromophore 4-(N,n-dimethylamino)-N-methyl-4'-toluene sulfonate (DAST) from their vibrational spectra,” J. Raman Spectrosc. 40(1), 52–63 (2009). [CrossRef]

], or in THz emission from DAST [6

6. T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984–5988 (2004). [CrossRef]

,17

17. C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T. D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008). [CrossRef]

] but the associated linewidths and indices of refraction were not given. The feature at 1.1 THz has been previously attributed to a transverse optical phonon associated with the anion-cation pair vibration [14

14. M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25(12), 911–913 (2000). [CrossRef]

]. Isolated, single molecule, gas phase density functional theory (DFT) models have attributed the feature at 3.1 THz to the vibration of the anion, at 5.2 THz to a vinyl C-H torsional mode on the cation, and at 12.3 THz to a phenyl ring mode [24

24. T. Vijayakumar, I. H. Joe, C. P. R. Nair, M. Jazbinsek, and V. S. Jayakumar, “Electron-phonon coupling and vibrational modes contributing to linear electro-optic effect of the efficient NLO chromophore 4-(N,n-dimethylamino)-N-methyl-4'-toluene sulfonate (DAST) from their vibrational spectra,” J. Raman Spectrosc. 40(1), 52–63 (2009). [CrossRef]

], but fail to predict the other absorption features. DFT models such as these have difficulty reproducing low frequency THz spectra, which are dominated by collective vibrations, since they neglect inter-molecule interactions that are present in the bulk. Modeling THz spectra remains an active area of research [25

25. D. G. Allis, J. A. Zeitler, P. F. Taday, and T. M. Korter, “Theoretical analysis of the solid-state terahertz spectrum of the high explosive RDX,” Chem. Phys. Lett. 463(1-3), 84–89 (2008). [CrossRef]

]. The similar structure of the derivatives of DAST will give them similar absorption features [10

10. T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz properties of a new organic crystal, 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932–L934 (2005). [CrossRef]

]. Though Cherenkov radiation from DAST may avoid phase matching requirements, the absorption features remain present in the emitted spectrum [18

18. K. Suizu, T. Shibuya, H. Uchida, and K. Kawase, “Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal,” Opt. Express 18(4), 3338–3344 (2010). [CrossRef] [PubMed]

]. Estimating the THz properties of DAST by modeling its emission via DFG underestimates the effects of these absorption features [15

15. S. Ohno, K. Miyamoto, H. Minamide, and H. Ito, “New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region,” Opt. Express 18(16), 17306–17312 (2010). [CrossRef] [PubMed]

]. Such techniques are valuable above 15 THz where TDS is difficult. We also identify resonances centered at 1.1, 1.3, 1.6, 2.2, 3, 5.2, 7.2, 9.6 and 11.7 THz for the b-axis of DAST. Only the resonances at 1.1, 1.3, and 1.6 have been previously observed [14

14. M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25(12), 911–913 (2000). [CrossRef]

], though DFT models assign the 11.7 THz feature to the torsional mode of the anion methyl group [24

24. T. Vijayakumar, I. H. Joe, C. P. R. Nair, M. Jazbinsek, and V. S. Jayakumar, “Electron-phonon coupling and vibrational modes contributing to linear electro-optic effect of the efficient NLO chromophore 4-(N,n-dimethylamino)-N-methyl-4'-toluene sulfonate (DAST) from their vibrational spectra,” J. Raman Spectrosc. 40(1), 52–63 (2009). [CrossRef]

].

Given the optical properties of DAST [3

3. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996). [CrossRef]

], and THz indices we have determined, we compute the coherence length, lc, across the band for various pump wavelengths, Fig. 5
Fig. 5 The coherence length, lc, across the THz band of a DAST emitter pumped with (a) a-axis or (b) b-axis polarized light at relevant wavelengths.
. For Ti:Sapphire wavelengths the lc is larger for an emitter beam polarized parallel to the b-axis than the a-axis. This is unfortunate, as the nonlinearity is nearly an order of magnitude larger for a-axis emission. Though the emission could be stronger for a-axis orientation, the b-axis must be used if broad bandwidth is desired. The bandwidth over which there is good phase matching is consistent with the bandwidth seen from a 60 μm thick DAST crystal [16

16. X. Zheng, C. V. McLaughlin, P. D. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58–76 (2007). [CrossRef]

]. The largest component of the nonlinear susceptibility, χ 111, can be accessed at longer wavelengths. There is good phase matching near 1300 nm for light polarized parallel to the a-axis. Unfortunately, the nonlinear susceptibility exhibits dispersion, as the linear absorption bands of DAST are near 500 nm. At longer wavelengths the nonlinearity is no longer resonantly enhanced and will be lower than at shorter wavelengths. Though the coherence length is large at these wavelengths, thick DAST crystals used as THz emitters will show numerous spectral gaps due to phonon absorption. The coherence length is consistent with the near 15 THz bandwidth reported using a 160 μm thick DAST crystal [17

17. C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T. D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008). [CrossRef]

].

In summary, we have reported the first use of a THz spectrometer based on air-plasma THz generation and FSEOS in a poled polymer. The far infrared properties of DAST are measured from 0.6 to 12 THz, identifying multiple previously unidentified phonon bands and showing their effect on THz emission. Our results are consistent with recent published FTIR spectra [7

7. H. Ito, K. Miyamoto, and H. Minamide, “Ultra-Broadband, Frequency-agile THz-wave Generator and its Applications,” in Advanced Solid-State Photonics, OSA Tech. Digest Ser. (Nara, Japan, 2008), p. WD1.

] and broadband THz emission spectra from DAST [17

17. C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T. D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008). [CrossRef]

], and can be used to guide future THz applications.

Acknowledgements

This material is based upon work supported by the STC program of the National Science Foundation No. DMR 0120967 and a grant from the Air Force Office of Scientific Research No. FA 9550-07-1-0122.

References and links

1.

J. Liu and X.-C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106(2), 023107 (2009). [CrossRef]

2.

X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992). [CrossRef]

3.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996). [CrossRef]

4.

C. Bosshard, R. Spreiter, L. Degiorgi, and P. Gunter, “Infrared and Raman spectroscopy of the organic crystal DAST: Polarization dependence and contribution of molecular vibrations to the linear electro-optic effect,” Phys. Rev. B 66(20), 205107 (2002). [CrossRef]

5.

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Gunter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822–1835 (2006). [CrossRef]

6.

T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984–5988 (2004). [CrossRef]

7.

H. Ito, K. Miyamoto, and H. Minamide, “Ultra-Broadband, Frequency-agile THz-wave Generator and its Applications,” in Advanced Solid-State Photonics, OSA Tech. Digest Ser. (Nara, Japan, 2008), p. WD1.

8.

J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008). [CrossRef] [PubMed]

9.

M. Martin, J. Mangeney, P. Crozat, and P. Mounaix, “Optical phase detection in a 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate crystal for terahertz time domain spectroscopy system at 1.55 µm wavelength,” Appl. Phys. Lett. 97(11), 111112 (2010). [CrossRef]

10.

T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz properties of a new organic crystal, 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932–L934 (2005). [CrossRef]

11.

T. Matsukawa, Y. Takahashi, R. Miyabara, H. Koga, H. Umezawa, I. Kawayama, M. Yoshimura, S. Okada, M. Tonouchi, and Y. Kitaoka, “Development of DAST-derivative crystals for terahertz wave generation,” J. Cryst. Growth 311(3), 568–571 (2009). [CrossRef]

12.

M. Yoshimura, T. Matsukawa, Y. Takemoto, K. Takeya, Y. Takahasi, H. Umezawa, S. Okada, M. Tonouchi, Y. Kitaoka, and Y. Mori, “New organic nonlinear optical crystal BDAS-TP for terahertz applications,” in Conference on Lasers and Electro-Optics (San Jose, Ca., 2010), p. CTuR6.

13.

K. Akiyama, S. Okada, Y. Goto, and H. Nakanishi, “Modification of DAST-based compounds toward enhanced terahertz-wave generation,” J. Cryst. Growth 311(3), 953–955 (2009). [CrossRef]

14.

M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25(12), 911–913 (2000). [CrossRef]

15.

S. Ohno, K. Miyamoto, H. Minamide, and H. Ito, “New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region,” Opt. Express 18(16), 17306–17312 (2010). [CrossRef] [PubMed]

16.

X. Zheng, C. V. McLaughlin, P. D. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58–76 (2007). [CrossRef]

17.

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T. D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008). [CrossRef]

18.

K. Suizu, T. Shibuya, H. Uchida, and K. Kawase, “Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal,” Opt. Express 18(4), 3338–3344 (2010). [CrossRef] [PubMed]

19.

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006). [CrossRef] [PubMed]

20.

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007). [CrossRef] [PubMed]

21.

M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett. 29(10), 1120–1122 (2004). [CrossRef] [PubMed]

22.

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996). [CrossRef]

23.

P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005). [CrossRef] [PubMed]

24.

T. Vijayakumar, I. H. Joe, C. P. R. Nair, M. Jazbinsek, and V. S. Jayakumar, “Electron-phonon coupling and vibrational modes contributing to linear electro-optic effect of the efficient NLO chromophore 4-(N,n-dimethylamino)-N-methyl-4'-toluene sulfonate (DAST) from their vibrational spectra,” J. Raman Spectrosc. 40(1), 52–63 (2009). [CrossRef]

25.

D. G. Allis, J. A. Zeitler, P. F. Taday, and T. M. Korter, “Theoretical analysis of the solid-state terahertz spectrum of the high explosive RDX,” Chem. Phys. Lett. 463(1-3), 84–89 (2008). [CrossRef]

OCIS Codes
(160.4670) Materials : Optical materials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Materials

History
Original Manuscript: October 4, 2010
Revised Manuscript: October 21, 2010
Manuscript Accepted: October 22, 2010
Published: October 26, 2010

Citation
Paul D. Cunningham and L. Michael Hayden, "Optical properties of DAST in the THz range," Opt. Express 18, 23620-23625 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23620


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liu and X.-C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106(2), 023107 (2009). [CrossRef]
  2. X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992). [CrossRef]
  3. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13–15 (1996). [CrossRef]
  4. C. Bosshard, R. Spreiter, L. Degiorgi, and P. Gunter, “Infrared and Raman spectroscopy of the organic crystal DAST: Polarization dependence and contribution of molecular vibrations to the linear electro-optic effect,” Phys. Rev. B 66(20), 205107 (2002). [CrossRef]
  5. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Gunter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822–1835 (2006). [CrossRef]
  6. T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984–5988 (2004). [CrossRef]
  7. H. Ito, K. Miyamoto, and H. Minamide, “Ultra-Broadband, Frequency-agile THz-wave Generator and its Applications,” in Advanced Solid-State Photonics, OSA Tech. Digest Ser. (Nara, Japan, 2008), p. WD1.
  8. J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008). [CrossRef] [PubMed]
  9. M. Martin, J. Mangeney, P. Crozat, and P. Mounaix, “Optical phase detection in a 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate crystal for terahertz time domain spectroscopy system at 1.55 µm wavelength,” Appl. Phys. Lett. 97(11), 111112 (2010). [CrossRef]
  10. T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, “Terahertz properties of a new organic crystal, 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate,” Jpn. J. Appl. Phys. 44(29), L932–L934 (2005). [CrossRef]
  11. T. Matsukawa, Y. Takahashi, R. Miyabara, H. Koga, H. Umezawa, I. Kawayama, M. Yoshimura, S. Okada, M. Tonouchi, and Y. Kitaoka, “Development of DAST-derivative crystals for terahertz wave generation,” J. Cryst. Growth 311(3), 568–571 (2009). [CrossRef]
  12. M. Yoshimura, T. Matsukawa, Y. Takemoto, K. Takeya, Y. Takahasi, H. Umezawa, S. Okada, M. Tonouchi, Y. Kitaoka, and Y. Mori, “New organic nonlinear optical crystal BDAS-TP for terahertz applications,” in Conference on Lasers and Electro-Optics (San Jose, Ca., 2010), p. CTuR6.
  13. K. Akiyama, S. Okada, Y. Goto, and H. Nakanishi, “Modification of DAST-based compounds toward enhanced terahertz-wave generation,” J. Cryst. Growth 311(3), 953–955 (2009). [CrossRef]
  14. M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25(12), 911–913 (2000). [CrossRef]
  15. S. Ohno, K. Miyamoto, H. Minamide, and H. Ito, “New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region,” Opt. Express 18(16), 17306–17312 (2010). [CrossRef] [PubMed]
  16. X. Zheng, C. V. McLaughlin, P. D. Cunningham, and L. M. Hayden, “Organic broadband terahertz sources and sensors,” J. Nanoelectron. Optoelectron. 2(1), 58–76 (2007). [CrossRef]
  17. C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T. D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008). [CrossRef]
  18. K. Suizu, T. Shibuya, H. Uchida, and K. Kawase, “Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal,” Opt. Express 18(4), 3338–3344 (2010). [CrossRef] [PubMed]
  19. X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006). [CrossRef] [PubMed]
  20. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007). [CrossRef] [PubMed]
  21. M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett. 29(10), 1120–1122 (2004). [CrossRef] [PubMed]
  22. L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996). [CrossRef]
  23. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005). [CrossRef] [PubMed]
  24. T. Vijayakumar, I. H. Joe, C. P. R. Nair, M. Jazbinsek, and V. S. Jayakumar, “Electron-phonon coupling and vibrational modes contributing to linear electro-optic effect of the efficient NLO chromophore 4-(N,n-dimethylamino)-N-methyl-4'-toluene sulfonate (DAST) from their vibrational spectra,” J. Raman Spectrosc. 40(1), 52–63 (2009). [CrossRef]
  25. D. G. Allis, J. A. Zeitler, P. F. Taday, and T. M. Korter, “Theoretical analysis of the solid-state terahertz spectrum of the high explosive RDX,” Chem. Phys. Lett. 463(1-3), 84–89 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited