OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23844–23856
« Show journal navigation

Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities

Ying Li, Jiangjun Zheng, Jie Gao, Jing Shu, Mehmet Sirin Aras, and Chee Wei Wong  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23844-23856 (2010)
http://dx.doi.org/10.1364/OE.18.023844


View Full Text Article

Acrobat PDF (2017 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the strong optomechanical dynamical interactions in ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is based on mode-gap photonic crystal cavities with light localization in an air mode with 0.02(λ/n)3 modal volumes while preserving optical cavity Q up to 5 × 106. The mechanical mode is modeled to have fundamental resonance Ωm /2π of 460 MHz and a quality factor Qm estimated at 12,000. For this slot-type optomechanical cavity, the dispersive coupling gom is numerically computed at up to 940 GHz/nm (Lom of 202 nm) for the fundamental optomechanical mode. Dynamical parametric oscillations for both cooling and amplification, in the resolved and unresolved sideband limit, are examined numerically, along with the displacement spectral density and cooling rates for various operating parameters.

© 2010 OSA

1. Introduction

It is well-known that light has mechanical effects [1

1. P. Meystre, and M. Sargent III, “Mechanical Effects of Light,” in Elements of Quantum Optics (Springer, 2007), Chapter 6.

] and its radiation forces can be used to manipulate small atoms and particles [2

2. S. Chu, “Laser manipulation of atoms and particles,” Science 253(5022), 861–866 (1991). [CrossRef] [PubMed]

]. Nowadays, the effects of optical forces in various mechanical and optical structures and systems have attracted intense and increasing interest for investigation [3

3. F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009). [CrossRef]

]. Especially, the field of cavity optomechanics develops very fast [4

4. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007). [CrossRef] [PubMed]

7

7. D. Van Thourhout and J. Roels, “Optomechanical Device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010). [CrossRef]

], with recent studies covering a vast span of fundamental physics and derived applications [8

8. C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation,” Phys. Rev. A 51(3), 2537–2541 (1995). [CrossRef] [PubMed]

28

28. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4(4), 236–242 (2010). [CrossRef]

]. In this field, the optomechanical coupling between the supported mechanical and optical cavity modes are of key importance due to its direct relevance to the generated optical forces, and one main goal of the developed techniques is to cool the targeted mechanical mode to its quantum mechanical ground state [10

10. I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004). [CrossRef] [PubMed]

,20

20. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99(9), 093902 (2007). [CrossRef] [PubMed]

,24

24. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009). [CrossRef]

,27

27. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010). [CrossRef] [PubMed]

]. Several classes of cavity optomechanical systems have been explored. One of the initial efforts examines macroscopic movable mirrors in the Laser Interferometer Gravitational Wave Observatory (LIGO) project [29

29. V. B. Braginsky, Measurement of Weak Forces in Physics Experiments (University of Chicago Press, Chicago, 1977).

,30

30. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric Oscillatory instability in Fabri-Perot Interferometer,” Phys. Lett. A 287(5-6), 331–338 (2001). [CrossRef]

]. Based on the micro- and nano-fabrication techniques, optomechanical resonators such as mirror coated AFM-cantilevers [14

14. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006). [CrossRef] [PubMed]

], movable micromirrors [15

15. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006). [CrossRef] [PubMed]

,16

16. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006). [CrossRef] [PubMed]

], vibrating microtoroids [11

11. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005). [CrossRef] [PubMed]

,31

31. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006). [CrossRef]

], and nano-membranes [21

21. J. D. Thompson, B. M. Zwickl, A. M. Jayich, and S. M. Florian Marquardt, “Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 06715 (2008).

,32

32. D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103(20), 207204 (2009). [CrossRef]

] have been examined recently. Radiation-pressure dynamic backaction could be observed in these geometries. In addition, another class of optomechanical devices utilizes optical gradient forces [33

33. M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005). [CrossRef] [PubMed]

38

38. A. H. Safavi-Naeini, T. P. Mayer Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q slotted 2D photonic crystal cavity,” arXiv: 1006.3964.

] based on near-field effects. Compared to radiation-pressure based optomechanical cavities, these devices can achieve wavelength-scale effective optomechanical coupling lengths due to the strong transverse evanescent-field coupling between the adjacent cavity elements [25

25. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009). [CrossRef] [PubMed]

,26

26. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009). [CrossRef]

,33

33. M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005). [CrossRef] [PubMed]

35

35. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]

,18

18. P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007). [CrossRef]

,38

38. A. H. Safavi-Naeini, T. P. Mayer Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q slotted 2D photonic crystal cavity,” arXiv: 1006.3964.

]. Photonic crystal membranes can be very good candidate platform with great design flexibility [39

39. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006). [CrossRef] [PubMed]

44

44. S. Mohammadi, A. A. Eftekhar, A. Khelif, and A. Adibi, “Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs,” Opt. Express 18(9), 9164–9172 (2010). [CrossRef] [PubMed]

], with photonic crystal cavities offering an ultrahigh optical quality factor with a small volume [45

45. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]

47

47. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008). [CrossRef] [PubMed]

]. The internal optical intensity is very high and sensitive to the geometrical changes. However, to make these cavities support mechanical cavity modes with strong coupling with the optical modes, special design considerations are needed. Current reported geometries are either in-plane in side-by-side configuration [48

48. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]

,49

49. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8), 8705–8712 (2010). [CrossRef] [PubMed]

] or vertically superimposed in face-to-face configuration [50

50. Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010). [CrossRef]

]. Both configurations are recently examined experimentally. to be promising for cavity optomechanical operations.

2. Optomechanical slot-type cavity design

2.1 Ultrahigh-Q/V cavity optical modes

The slot-type optomechanical cavity is based on the air-slot mode-gap optical cavities recently demonstrated experimentally for gradual width-modulated mode-gap cavities [38

38. A. H. Safavi-Naeini, T. P. Mayer Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q slotted 2D photonic crystal cavity,” arXiv: 1006.3964.

,51

51. J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010). [CrossRef]

] or heterostructure lattices [54

54. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009). [CrossRef]

], and theoretical proposed earlier in Ref [47

47. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008). [CrossRef] [PubMed]

]. A non-terminated air-slot [55

55. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]

] is added to width-modulate line-defect photonic crystal cavities to create ultrasmall mode volume cavities. To better understand the various modes existing in the air-slot mode-gap cavities, the modes in the slotted photonic crystal waveguide with W1 line-defect width and their dispersion properties are first investigated and shown in Fig. 1(a)
Fig. 1 (a) Photonic band structure of slotted PhCWG with s = 80nm. The blue dashed lines show the three modes in the slotted PhCWG. (b) H-field and energy distribution of waveguide modes I, II and III. (c) E-field and energy distribution of the first (above) and the second (below) cavity modes.
for the three localized waveguide modes. Mode I and II can be traced back to the W1 waveguide fundamental even mode and high-order odd mode respectively inside the photonic band gap, while mode III can be understood as arising from the second index-guided mode (as shown in Ref [59

59. C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Herrmann, O. Hess, and U. Gosele, ““Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1(1), 1–13 (2003). [CrossRef]

].) below the projected bulk modes. We produce the cavities by locally shifting the air holes away from the center of waveguide – thus the cavity mode resonances are created below the transmission band of the slotted waveguide. Two of the possible modes in the cavities are shown in Fig. 1(b). Confirmed from the mode frequency and symmetry, cavity mode I is due to the mode gap of slotted waveguide mode I [Fig. 1(b)] and is expected to have both high Q and sub-wavelength V. Cavity mode II [Fig. 1(c)] represents the mode with the same odd symmetry as mode II in slotted waveguide.

2.2 Cavity mechanical modes

There are a number of possible dissipative processes where mechanical vibrational energy is dissipated into heat, either inside the structure or via interaction with its surroundings. These processes include squeezed film damping due to air viscosity [62

62. Stephen D. Senturia, Microsystem Design (Springer 2000).

], clamping losses, internal viscous damping in the silicon structure, and thermoelastic damping. Thermoelastic losses often set a lower ballpark estimate of the attainable Qm in a vibrating beam element, where Qm,Zener of the fundamental mechanical mode is expressed by [63

63. C. Zener, “Internal Friction in Solids. I. Theory of Internal Friction in Reeds,” Phys. Rev. 52(3), 230–235 (1937). [CrossRef]

,64

64. T. H. Metcalf, B. B. Pate, D. M. Photiadis, and B. H. Houston, “Thermoelastic damping in micromechanical resonators,” Appl. Phys. Lett. 95(6), 061903 (2009). [CrossRef]

]: Qm,Zener=cρEα2TR1+(ωτz)2ωτz where TR is the ambient reservoir temperature,τz is the thermal relaxation time defined by b2π2χ, χ=κcρ, and b is the width of the beam. With silicon material properties, TR at 300K, and b at 1.7 μm, Qm is found to be in the range of 12,000 for the fundamental mode, and 40,000 and 60,000 for the third and eighth mechanical modes respectively.

3. Coupling factor and symmetry considerations

Cavity optomechanics involves the mutual coupling of two modes in the same spatially co-located oscillator: one optical (characterized by its optical eigenfrequency and electromagnetic fields) and one mechanical (characterized by its mechanical eigenfrequency and displacement fields) degrees-of freedom. The perturbed cavity optical resonance, modified by small displacement about equilibrium displacement α, can be given by its Taylor expansion around ωo(α). If we consider the first-order expansion, and also set ωo(α)=ωo|α=α0as the equilibrium resonance of the optical mode, then the first order gom = dωo/dα can be defined as optomechanical coupling rate. gom also represents the differential frequency shift of the cavity resonance (ωo ) with mechanical displacement (α) of the slot cavity beams. One can parameterize the interaction strength between optical and mechanical degrees-of-freedom by an effective coupling length Lom [42

42. M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009). [CrossRef] [PubMed]

] described by: Lom11ωdωdα, with a corresponding optomechanical coupling frequency gom defined by gomωo/Lom.

3.1 Perturbation theory

Perturbation theory for Maxwell’s equations with shifting material boundaries was used to calculate the coupling length Lom [57

57. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 2), 066611 (2002). [CrossRef] [PubMed]

,58

58. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1246 (2004). [CrossRef]

]. With the parameter Δαcharacterizing the perturbation, the Hellman-Feynman theorem [65

65. C. Cohen-Tannoudji, B. Din, and F. Laloe, Quantum Mechanics (Hermann, Paris, 1977), Vol. 1, Chap. 2; Vol. 2, Chaps. 11 and 13.

] provides an exact expression for the derivative of ω in the limit of infinitesimal Δα, dωdα=ω(0)2E(0)|dεdα|E(0)E(0)|ε|E(0), where the terms with the (0) superscripts denote the unperturbed terms. With shifting material boundaries, the discontinuities in the E-field or the eigenoperator are overcome with anisotropic smoothening which gives the following expression for the integral in the numerator [57

57. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 2), 066611 (2002). [CrossRef] [PubMed]

], E(0)|dεdα|E(0)=dAdhdα[Δε12|E||(0)|2Δ(ε121)|D(0)|2], for first-order perturbation of the cavity resonance. The integral is performed across the entire boundary surfaces of the optomechanical cavity, with h the displacement perpendicular to the unperturbed boundary surface, Δε12defined as (ε1 - ε2) and Δ(ε121)defined as (ε11 - ε21). |E||(0)|2is the unperturbed E-field parallel to the boundary surface while |D(0)|2is the unperturbed electric displacement D normal to the boundary surface. From Ref [43

43. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009). [CrossRef] [PubMed]

], one defines Q(r) = αq(r), where α is the largest displacement amplitude that occurs anywhere for the displacement field Q(r). From the perturbative formulation, one then obtains:
LOM1=12dA(q(r)n^)[Δε12(r)|E||(0)(r)|2Δ(ε121(r))|D(0)(r)|2]dVε(r)|E(r)|2,
(1)
where n^ is the unit normal vector at the surface of the unperturbed cavity and the spatial r-dependence explicitly shown here.

3.2 Optomechanical coupling in slot-type optical cavities

Figure 4
Fig. 4 (a) Computed optomechanical coupling rates of the fundamental optical mode with first (black solid squares) and second (red open circles) allowed mechanical modes, computed for the different slot gaps s. The inset panel is the corresponding coupling length. (b) Computed optomechanical coupling rates of the second optical mode coupled with first (black solid squares) and second (red open circles) allowed mechanical modes.
shows the computed optomechanical coupling in the slot-type mode gap cavities, from first-order perturbation theory. As noted from parity consideration, here we show the optomechanical coupling strengths for the first optical mode to the allowed first (Ωm,1) and second (Ωm,3) mechanical modes, denoted as gom(O1-M1) and gom(O1-M2)respectively. We illustrate the coupling strengths for different slot gaps s of cavity, ranging from 40nm to 200nm. The electromagnetic field used is within a slot length l = 8a, since the cavity is confined by the PhCWG mode gap to a spatial localization of only several lattice constants a. As shown in Fig. 4, when the first optical mode is coupled with the second mechanical mode, the gom is lower than that with the fundamental mechanical mode, which means the fundamental optical and mechanical modes provide the strongest dispersive coupling. The negative values depict as a decrease in optical resonance frequency for increasing slot widths s. For the fundamental mode, the dispersive coupling can go up to 940GHz/nm (or a coupling length of 202nm) for a slot width of 40nm. This strong optomechanical coupling is more than an order of magnitude larger than in earlier optomechanical implementations [21

21. J. D. Thompson, B. M. Zwickl, A. M. Jayich, and S. M. Florian Marquardt, “Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 06715 (2008).

,25

25. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009). [CrossRef] [PubMed]

,48

48. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]

]. We also note that, since the electromagnetic field is negligible outside the cavity region of l = 8a, the coupling length does not change much when l is longer than 8a.

4. Coupled mode theory

The coupled equations of motion for the optical and mechanical modes can be derived from a single Hamiltonian [66

66. Haus H A, Waves and Fields in Optoelectronics (Prentice-Hall 1984).

,8

8. C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation,” Phys. Rev. A 51(3), 2537–2541 (1995). [CrossRef] [PubMed]

]:
dadt=iΔ(x)a(12τ0+12τex)a+i1τexs,d2xdt2+Ωm2Qmdxdt+Ωm2x=FOM(t)meff+FL(t)meff=gOMω0|a|2meff+FL(t)meff,
(2)
where |a|2is the stored cavity energy, |s|2 the launched input power into the cavity, with a cavity decay rate κ of 12τ=12τ0+12τex, with intrinsic rate 1/τo and coupling rate 1/τex. Δ(x)=ωω0(x) is the pump laser frequency ω detuning with respect to the cavity resonance ωo(x) with explicitly displacement x shown. In this case, we haveΔ(x)=ΔgOMx. FL(t) is the thermal Langevin force. We illustrate the time-domain displacement x(t) and the normalized cavity amplitude of the first optical and first mechanical modes in Fig. 5(a)
Fig. 5 (a) Time-domain cavity amplitude a (solid blue line) and displacement x (dashed green line) of the first optical and first mechanical modes, with gom of 940 GHz/nm, Ωm/2π of 470 MHz, Qm of 12,400, κ/2π of 425 GHz, and (1/τex)/2π of 38 MHz. (b) Time-domain cavity amplitude for normalized detunings Δτ at −1, −0.25, 0, 0.25 and 1 (top to bottom).
. The cavity amplitude oscillates in-phase with the displacement within the mechanical frequency cycle as shown. In Fig. 5(b) we show the optical cavity amplitude transduction for different normalized detunings (Δτ = −1, −0.25, 0, 0.25, 1). At zero detuning and with a launched power |s|2into the cavity, the cavity amplitude oscillates with a single-period cycle at the fundamental mechanical mode frequency, as indicative of mixing of the optomechanical domains. At detunings Δτ = ± 0.25, a two-period cycle with a second amplitude maxima is distinctly observed, with inverted transmission between the blue and red detunings. At larger detunings (such as Δτ = ± 1), a two-period cycle is still observed, although the second amplitude maxima is suppressed.

5. Displacement spectral density

5.1 Optically-induced stiffening and effective damping rate

From the coupled equations, the x-dependent contribution to this adiabatic response provides an optical contribution to the stiffness of the spring-mass system. The corresponding change in spring constant leads to a frequency shift relative to the unperturbed mechanical oscillator eigenfrequency, or termed as optically-induced stiffening [4

4. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007). [CrossRef] [PubMed]

,48

48. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]

]. The non-adiabatic contribution in coupled equations is proportional to the velocity of the spring-mass system. The optical gradient force induced damping rate modifies the intrinsic mechanical resonator loss rate Γm, yielding an effective damping rate: Γeff=Γ+Γmwhere Γ=ω02ΩmLom2meff(2κexκ2+4Δ2)[κ/2(ΔΩm)2+(κ/2)2κ/2(Δ+Ωm)2+(κ/2)2]P. We note that this is valid only in the weak retardation regime in whichκ>>Ωm. We illustrate in Fig. 6
Fig. 6 (a-c) Two-dimensional surface plots of the first optical – first mechanical mode linewidth (a) mechanical frequency (b) and effective temperature (c), for varying detunings and optical Q factors. A fixed pump power of 1pW is used, along with an effective mass of 200fg and a 300K bath temperature. The dashed white line denotes the condition for Ωm = κ. (d-f) Example first optical – first mechanical mode linewidths (d), frequency shift (e) and effective temperature (f) with two input powers (P) and varying laser-cavity detuning. Otherwise indicated, the conditions are identical to panel (a), and with optical Q chosen at 5 × 105.
the corresponding frequency shifts and effective damping rate of the slot-type mode-gap cavity, for different input powers and normalized detuning (Δτ). With this classical model, the laser introduces a damping without introducing a modified Langevin force. This is a key feature and allows the enhanced damping to reduce the mechanical oscillator temperature, yielding as a final effective temperature Teff for the mechanical mode under consideration: TeffΓmΓeffTR. As shown in Fig. 6, as optical Q increases, at certain detuning the frequency shift becomes larger and the effective temperature is lowered, denoting the increased cooling rate. For a fixed optical Q in the unresolved sideband limit, there will be an optimal detuning where the linewidth reaches its largest value and the effective temperature is the lowest. In our case this optimal detuning Δτ is around −0.25 with an input power of 50pW and the effective temperature can be lower than 50K.

The spectral density of purely mechanical displacement in the oscillator is described as: Sx(Ω)=2ΓmkBT/mx(Ωm2Ω2)2+(ΩΓm)2 without the optical stiffening and damping. Since the coupling will shift the oscillator frequency and damping, we can modify Ωmand Γmin the expression into Ωm'=Ωm+ΔΩmandΓm'=Γ+Γm. Figure 7(a)
Fig. 7 (a) Displacement spectral density of the first mechanical mode, with optical detuning from the first optical mode. With the input power increasing from 0 to 9.5uW, in addition to an observed optical stiffening, the amplitude decreases with a larger linewidth for a decrease in the effective temperature. The detuning Δτ is fixed at −0.25, for an optical Q of 5 × 105, meff of 200fg, at 300K bath temperature. (b) Displacement spectral density of the first and second allowed mechanical modes with different detunings. The scale bar is in dB with units of m2/Hz (pump powers P1 of 0.1uW and P2 of 50uW used respectively in the modeling).
shows the resulting displacement spectral density when the input power P changes from 0 to 6.9uW, and normalized detuning Δτ = −0.25 where the linewidth has the maximum value and the frequency shift is positive. With increasing input power, the peak value of the displacement spectral density goes down and the full-width at half-maximum becomes larger, which demonstrates an effective cooled temperature of the slot-type optomechanical oscillator. In Fig. 7(b) we show the optical stiffing and linewidth damping of the first two mechanical modes, for a span of detunings while maintaining a fixed input power. Note that the optical stiffening is not monotonic with increasing detuning. For a cavity decay κ/2π of 387 MHz, the optimal detuning is at Δτ of −0.43, for the largest optical gradient force stiffening. For the second allowed mode, in the region of normalized detuning from zero to −4, this stiffening is large which leads to a significantly suppressed spectral density. Moreover, note that in both Fig. 7(a) and 7(b), a large optical stiffening can be observed in the slot-type optomechanical cavity, where the optical stiffening can result in a modified mechanical frequency more than 1.86 × the bare mechanical frequency.

As shown above, both cooling and amplification can be realized in the optomechanical cavity through the red- and blue-detuning to the cavity resonance. An important question is what limiting temperature is achievable with the optical gradient force backaction cooling technique as described above. Two theoretical papers [22

22. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and I. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008). [CrossRef]

,26

26. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009). [CrossRef]

] have extended the classical theory of radiation-pressure backaction cooling to the quantum regime and shown the close relationship that cavity backaction cooling has with the laser cooling of harmonically bound atoms and ions. The result can be simply divided by two conditions. In the unresolved side-band regime, κ>>Ωm, the ground state cooling is limited as: nfκ4Ωm>>1, where nf is the minimum phonon number. On the other hand, in the resolved side-band regime, Ωm>>κ, occupancies well below unity can be attained yielding: nfκ216Ωm2<<1. Most of the present optomechanical cavities are in the unresolved sideband regime, either because low optical quality factor or low mechanical frequency, which limit the minimum phonon number higher than unity. However, since our ultrahigh-Q/V slot-type photonic crystal cavity has a high optical Q factor and higher mechanical frequency due to its small volume, it has significant potential to operate into the resolved sideband region. For example, for the first mechanical mode (Ωm/2π of 460 MHz), an optical Q of more than 5 × 105 will bring the optomechanical oscillator within the resolved sideband limit with a nf of 1 × 10−3, allowing the potential to cool the mechanical mode to its ground state.

6. Conclusion

Acknowledgments

The authors acknowledge discussions with S. Nellaiappan and P. Hsieh. This work is supported by Defense Advanced Research Projects Agency (DARPA) DSO with program manager Dr. J. R. Abo-Shaeer under contract number C11L10831.

References and links

1.

P. Meystre, and M. Sargent III, “Mechanical Effects of Light,” in Elements of Quantum Optics (Springer, 2007), Chapter 6.

2.

S. Chu, “Laser manipulation of atoms and particles,” Science 253(5022), 861–866 (1991). [CrossRef] [PubMed]

3.

F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009). [CrossRef]

4.

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007). [CrossRef] [PubMed]

5.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008). [CrossRef] [PubMed]

6.

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009). [CrossRef]

7.

D. Van Thourhout and J. Roels, “Optomechanical Device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010). [CrossRef]

8.

C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation,” Phys. Rev. A 51(3), 2537–2541 (1995). [CrossRef] [PubMed]

9.

S. Mancini and P. Tombesi, “Quantum noise reduction by radiation pressure,” Phys. Rev. A 49(5), 4055–4065 (1994). [CrossRef] [PubMed]

10.

I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004). [CrossRef] [PubMed]

11.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005). [CrossRef] [PubMed]

12.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005). [CrossRef] [PubMed]

13.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005). [CrossRef] [PubMed]

14.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006). [CrossRef] [PubMed]

15.

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006). [CrossRef] [PubMed]

16.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006). [CrossRef] [PubMed]

17.

M. Eichenfield, C. Michael, R. Perahia, and O. Painter, “Actuation of Micro-Optomechanical Systems Via Cavity Enhanced Optical Dipole Forces,” Nat. Photonics 1(7), 416–422 (2007). [CrossRef]

18.

P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007). [CrossRef]

19.

R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007). [CrossRef] [PubMed]

20.

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99(9), 093902 (2007). [CrossRef] [PubMed]

21.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, and S. M. Florian Marquardt, “Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 06715 (2008).

22.

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and I. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008). [CrossRef]

23.

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF Down-Converter based on Optomechanical Oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008). [CrossRef]

24.

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009). [CrossRef]

25.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009). [CrossRef] [PubMed]

26.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009). [CrossRef]

27.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010). [CrossRef] [PubMed]

28.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4(4), 236–242 (2010). [CrossRef]

29.

V. B. Braginsky, Measurement of Weak Forces in Physics Experiments (University of Chicago Press, Chicago, 1977).

30.

V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric Oscillatory instability in Fabri-Perot Interferometer,” Phys. Lett. A 287(5-6), 331–338 (2001). [CrossRef]

31.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006). [CrossRef]

32.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103(20), 207204 (2009). [CrossRef]

33.

M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005). [CrossRef] [PubMed]

34.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]

35.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]

36.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103(22), 223901 (2009). [CrossRef]

37.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]

38.

A. H. Safavi-Naeini, T. P. Mayer Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q slotted 2D photonic crystal cavity,” arXiv: 1006.3964.

39.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006). [CrossRef] [PubMed]

40.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonical crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008). [CrossRef]

41.

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009). [CrossRef] [PubMed]

42.

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009). [CrossRef] [PubMed]

43.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009). [CrossRef] [PubMed]

44.

S. Mohammadi, A. A. Eftekhar, A. Khelif, and A. Adibi, “Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs,” Opt. Express 18(9), 9164–9172 (2010). [CrossRef] [PubMed]

45.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]

46.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultra-high-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]

47.

T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008). [CrossRef] [PubMed]

48.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]

49.

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8), 8705–8712 (2010). [CrossRef] [PubMed]

50.

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010). [CrossRef]

51.

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010). [CrossRef]

52.

F. Riboli, P. Bettotti, and L. Pavesi, “Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides,” Opt. Express 15(19), 11769–11775 (2007). [CrossRef] [PubMed]

53.

Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong Optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81(12), 121101 (2010). [CrossRef]

54.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009). [CrossRef]

55.

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]

56.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005). [CrossRef] [PubMed]

57.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 2), 066611 (2002). [CrossRef] [PubMed]

58.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1246 (2004). [CrossRef]

59.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Herrmann, O. Hess, and U. Gosele, ““Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1(1), 1–13 (2003). [CrossRef]

60.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005). [CrossRef]

61.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007). [CrossRef] [PubMed]

62.

Stephen D. Senturia, Microsystem Design (Springer 2000).

63.

C. Zener, “Internal Friction in Solids. I. Theory of Internal Friction in Reeds,” Phys. Rev. 52(3), 230–235 (1937). [CrossRef]

64.

T. H. Metcalf, B. B. Pate, D. M. Photiadis, and B. H. Houston, “Thermoelastic damping in micromechanical resonators,” Appl. Phys. Lett. 95(6), 061903 (2009). [CrossRef]

65.

C. Cohen-Tannoudji, B. Din, and F. Laloe, Quantum Mechanics (Hermann, Paris, 1977), Vol. 1, Chap. 2; Vol. 2, Chaps. 11 and 13.

66.

Haus H A, Waves and Fields in Optoelectronics (Prentice-Hall 1984).

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(230.5750) Optical devices : Resonators
(230.4685) Optical devices : Optical microelectromechanical devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 10, 2010
Revised Manuscript: October 10, 2010
Manuscript Accepted: October 14, 2010
Published: October 28, 2010

Citation
Ying Li, Jiangjun Zheng, Jie Gao, Jing Shu, Mehmet Sirin Aras, and Chee Wei Wong, "Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities," Opt. Express 18, 23844-23856 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23844


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Meystre and M. Sargent III, “Mechanical Effects of Light,” in Elements of Quantum Optics (Springer, 2007), Chapter 6.
  2. S. Chu, “Laser manipulation of atoms and particles,” Science 253(5022), 861–866 (1991). [CrossRef] [PubMed]
  3. F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009). [CrossRef]
  4. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007). [CrossRef] [PubMed]
  5. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  6. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009). [CrossRef]
  7. D. Van Thourhout and J. Roels, “Optomechanical Device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010). [CrossRef]
  8. C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation,” Phys. Rev. A 51(3), 2537–2541 (1995). [CrossRef] [PubMed]
  9. S. Mancini and P. Tombesi, “Quantum noise reduction by radiation pressure,” Phys. Rev. A 49(5), 4055–4065 (1994). [CrossRef] [PubMed]
  10. I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004). [CrossRef] [PubMed]
  11. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005). [CrossRef] [PubMed]
  12. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005). [CrossRef] [PubMed]
  13. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005). [CrossRef] [PubMed]
  14. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006). [CrossRef] [PubMed]
  15. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006). [CrossRef] [PubMed]
  16. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006). [CrossRef] [PubMed]
  17. M. Eichenfield, C. Michael, R. Perahia, and O. Painter, “Actuation of Micro-Optomechanical Systems Via Cavity Enhanced Optical Dipole Forces,” Nat. Photonics 1(7), 416–422 (2007). [CrossRef]
  18. P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007). [CrossRef]
  19. R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007). [CrossRef] [PubMed]
  20. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99(9), 093902 (2007). [CrossRef] [PubMed]
  21. J. D. Thompson, B. M. Zwickl, A. M. Jayich, and S. M. Florian Marquardt, “Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 06715 (2008).
  22. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and I. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008). [CrossRef]
  23. M. Hossein-Zadeh and K. J. Vahala, “Photonic RF Down-Converter based on Optomechanical Oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008). [CrossRef]
  24. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009). [CrossRef]
  25. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009). [CrossRef] [PubMed]
  26. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009). [CrossRef]
  27. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010). [CrossRef] [PubMed]
  28. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4(4), 236–242 (2010). [CrossRef]
  29. V. B. Braginsky, Measurement of Weak Forces in Physics Experiments (University of Chicago Press, Chicago, 1977).
  30. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric Oscillatory instability in Fabri-Perot Interferometer,” Phys. Lett. A 287(5-6), 331–338 (2001). [CrossRef]
  31. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006). [CrossRef]
  32. D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103(20), 207204 (2009). [CrossRef]
  33. M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005). [CrossRef] [PubMed]
  34. M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]
  35. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]
  36. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103(22), 223901 (2009). [CrossRef]
  37. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  38. A. H. Safavi-Naeini, T. P. Mayer Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q slotted 2D photonic crystal cavity,” arXiv: 1006.3964.
  39. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006). [CrossRef] [PubMed]
  40. H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonical crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008). [CrossRef]
  41. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009). [CrossRef] [PubMed]
  42. M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009). [CrossRef] [PubMed]
  43. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009). [CrossRef] [PubMed]
  44. S. Mohammadi, A. A. Eftekhar, A. Khelif, and A. Adibi, “Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs,” Opt. Express 18(9), 9164–9172 (2010). [CrossRef] [PubMed]
  45. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  46. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultra-high-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  47. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008). [CrossRef] [PubMed]
  48. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]
  49. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8), 8705–8712 (2010). [CrossRef] [PubMed]
  50. Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010). [CrossRef]
  51. J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010). [CrossRef]
  52. F. Riboli, P. Bettotti, and L. Pavesi, “Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides,” Opt. Express 15(19), 11769–11775 (2007). [CrossRef] [PubMed]
  53. Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong Optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81(12), 121101 (2010). [CrossRef]
  54. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009). [CrossRef]
  55. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  56. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005). [CrossRef] [PubMed]
  57. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 2), 066611 (2002). [CrossRef] [PubMed]
  58. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1246 (2004). [CrossRef]
  59. C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Herrmann, O. Hess, and U. Gosele, ““Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1(1), 1–13 (2003). [CrossRef]
  60. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005). [CrossRef]
  61. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007). [CrossRef] [PubMed]
  62. Stephen D. Senturia, Microsystem Design (Springer 2000).
  63. C. Zener, “Internal Friction in Solids. I. Theory of Internal Friction in Reeds,” Phys. Rev. 52(3), 230–235 (1937). [CrossRef]
  64. T. H. Metcalf, B. B. Pate, D. M. Photiadis, and B. H. Houston, “Thermoelastic damping in micromechanical resonators,” Appl. Phys. Lett. 95(6), 061903 (2009). [CrossRef]
  65. C. Cohen-Tannoudji, B. Din, and F. Laloe, Quantum Mechanics (Hermann, Paris, 1977), Vol. 1, Chap. 2; Vol. 2, Chaps. 11 and 13.
  66. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited