OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23933–23938
« Show journal navigation

Interaction of short x-ray pulses with low-Z x-ray optics materials at the LCLS free-electron laser

S. P. Hau-Riege, R. A. London, A. Graf, S. L. Baker, R. Soufli, R. Sobierajski, T. Burian, J. Chalupsky, L. Juha, J. Gaudin, J. Krzywinski, S. Moeller, M. Messerschmidt, J. Bozek, and C. Bostedt  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23933-23938 (2010)
http://dx.doi.org/10.1364/OE.18.023933


View Full Text Article

Acrobat PDF (840 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Materials used for hard x-ray-free-electron laser (XFEL) optics must withstand high-intensity x-ray pulses. The advent of the Linac Coherent Light Source has enabled us to expose candidate optical materials, such as bulk B4C and SiC films, to 0.83 keV XFEL pulses with pulse energies between 1 μJ and 2 mJ to determine short-pulse hard x-ray damage thresholds. The fluence required for the onset of damage for single pulses is around the melt fluence and slightly lower for multiple pulses. We observed strong mechanical cracking in the materials, which may be due to the larger penetration depths of the hard x-rays.

© 2010 OSA

1. Introduction

The world’s first hard x-ray free electron laser (XFEL) – the Linac Coherent Light Source (LCLS) – has recently been built, providing high-brightness x-ray pulses with photon energies up to 8 keV [1

1. Y. Ding, A. Brachmann, F.-J. Decker, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. Hays, Ph. Hering, Z. Huang, R. Iverson, H. Loos, A. Miahnahri, H.-D. Nuhn, D. Ratner, J. Turner, J. Welch, W. White, and J. Wu, “Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source,” Phys. Rev. Lett. 102(25), 254801 (2009). [CrossRef] [PubMed]

]. The LCLS will be followed by similar XFEL facilities in Japan, the SPring8 Compact SASE Source (SCSS), and in Germany, the European XFEL. XFELs produce tunable, coherent, high-power radiation that will enable unique scientific research on ultrafast processes. At the same time, their unique output characteristics put severe requirements on the optics used to guide and shape the x-ray pulses and the detectors used to characterize them. This involves a new regime of radiation-matter interaction, which has been investigated in a series of experiments at the free electron laser in Hamburg (FLASH) at photon energies up to 177 eV [2

2. S. P. Hau-Riege, R. A. London, R. M. Bionta, D. Ryutov, R. Soufli, S. Bajt, M. A. McKernan, S. L. Baker, J. Krzywinski, R. Sobierajski, R. Nietubyc, D. Klinger, J. B. Pelka, M. Jurek, L. Juha, J. Chalupský, J. Cihelka, V. Hájková, A. Velyhan, J. Krása, K. Tiedtke, S. Toleikis, H. Wabnitz, M. Bergh, C. Caleman, and N. Timneanu, “Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation,” Appl. Phys. Lett. 95(11), 111104 (2009). [CrossRef]

4

4. J. Chalupský, V. Hájková, V. Altapova, T. Burian, A. J. Gleeson, L. Juha, M. Jurek, H. Sinn, M. Störmer, R. Sobierajski, K. Tiedtke, S. Toleikis, Th. Tschentscher, L. Vyšín, H. Wabnitz, and J. Gaudin, “Damage of amorphous carbon induced by soft x-ray femtosecond pulses above and below the critical angle,” Appl. Phys. Lett. 95(3), 031111 (2009). [CrossRef]

]. The extreme ultraviolet (EUV) radiation available at FLASH interacts primarily with valence shell electrons and the penetration depth is much smaller than the beam diameter. The LCLS produces x rays ten to one hundred times higher in energy than FLASH. These x rays interacts primarily with inner shell electrons and the penetration depth is larger, comparable to the beam diameter. Therefore, the material damage mechanisms may be different for EUV and x-ray FELs. In this letter we report on experiments using 0.83 keV photons at LCLS. These experiments are of interest both as fundamental studies of ultra-short x-ray pulse interaction with matter and as practical studies relevant to the design of optics and detectors for XFEL facilities and experiments.

2. Description of experiment

In the usual operation of LCLS, 0.25 nC electron bunches, with a transverse emittance less than 1 μm, are injected into the last 1 km of the 3 km-long Stanford Linear Accelerator. After acceleration and compression, the bunches emerge with energies between 4.5 and 14.3 GeV, and are injected into a 132 m-long planar-hybrid undulator. The undulator is operated near the FEL collective instability, leading to the emission of high-brightness x-ray pulses that are linearly polarized with a horizontal electric-field vector. We performed the experiments at 0.83 keV, which was the lowest energy the LCLS at the time since damage effects are expected to be most pronounced at low x-ray energies. The LCLS pulse energies at the exit of the undulator varied between 1 and 2 mJ. The beam was attenuated in a nitrogen-filled gas cell and then transported to the Atomic, Molecular, and Optical Sciences (AMO) endstation. There it was focused to a diameter of 1 to 2 μm using a Kirkpatrick-Baez mirror pair. We positioned the samples 1 cm downstream of the focus where the footprint of the beam on the sample has an area at 1/e intensity level of ≈150 μm2. We used a nitrogen-fluorescence detector to measure the absolute energy of each pulse [5

5. S. P. Hau-Riege, R. M. Bionta, D. D. Ryutov, and J. Krzywinski, “Measurement of x-ray free-electron-laser pulse energies by photoluminescence in nitrogen gas,” J. Appl. Phys. 103(5), 053306 (2008). [CrossRef]

,6

6. S. P. Hau-Riege, R. M. Bionta, D. D. Ryutov, R. A. London, E. Ables, K. I. Kishiyama, S. Shen, M. A. McKernan, D. H. McMahon, M. Messerschmidt, J. Krzywinski, P. Stefan, J. Turner, and B. Ziaja, “Near-ultraviolet luminescence of N2 irradiated by short X-ray pulses,” Phys. Rev. Lett. 105(4), 043003 (2010). [CrossRef] [PubMed]

]. The transmission of the beamline from the nitrogen-fluorescence detector to the sample was 13%, measured by using an absolutely-calibrated gas energy monitor [7

7. K. Tiedtke, A. Azima, N. von Bargen, L. Bittner, S. Bonfigt, S. Düsterer, B. Faatz, U. Frühling, M. Gensch, Ch. Gerth, N. Guerassimova, U. Hahn, T. Hans, M. Hesse, K. Honkavaar, U. Jastrow, P. Juranic, S. Kapitzki, B. Keitel, T. Kracht, M. Kuhlmann, W. B. Li, M. Martins, T. Nuñez, E. Plönjes, H. Redlin, E. L. Saldin, E. A. Schneidmiller, J. R. Schneider, S. Schreiber, N. Stojanovic, F. Tavella, S. Toleikis, R. Treusch, H. Weigelt, M. Wellhöfer, H. Wabnitz, M. V. Yurkov, and J. Feldhaus, “The soft x-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations,” N. J. Phys. 11(2), 023029 (2009). [CrossRef]

].

We exposed samples of bulk B4C and thin SiC-films on Si substrates to the LCLS beam. These materials are of particular interest because bulk B4C is used throughout the LCLS facility in protective stoppers, and SiC films are used as coatings for optical components. The bulk samples were fabricated using a hot-press process, leading to a grain size of a few μm, and polished to improve the surface roughness. Since B4C has a high hardness, polishing is difficult. The surface showed multiple rip-outs, but in between the rip-outs the surface roughness was less than 0.5 nm. The SiC films were 1 μm thick and had 1.5 nm rms surface roughness, as measured by atomic force microscopy (AFM) in the 2 µm – 20 nm spatial range. They were deposited onto silicon wafer substrates using DC-magnetron sputtering, with the same deposition conditions as those used for the 50-nm-thick SiC reflective coatings on the LCLS hard x-ray mirrors. The deposition conditions are aimed towards SiC coatings with lower stress, at the expense of a slight increase in roughness [8

8. R. Soufli, S. L. Baker, J. C. Robinson, E. M. Gullikson, T. J. McCarville, M. J. Pivovaroff, P. Stefan, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009). [CrossRef]

]. The samples were exposed in rows of 20 to 30 single-shot exposures. For each exposure, we varied the gas attenuator pressure continuously from the start to the end of the row to cover a range of fluence. The XFEL was operated in an on-demand, single-pulse mode. Multiple-pulse exposures were also performed, but using a constant gas attenuator setting. In this case, the XFEL operated at 1 to 30 Hz, and the number of pulses per spot ranged from 1 to 104.

3. Results

After the XFEL exposures, the samples were studied with a scanning electron microscope (SEM) and with an AFM. Figure 1
Fig. 1 SEM pictures of bulk B4C exposed to single XFEL pulses at 0.83 keV and peak fluences of (a) 2.6, (b) 5.4, (c) 7.0, (d) 11.4, (e) 19.6, and (f) 90.5 J/cm2.
shows SEM pictures of bulk B4C exposed to single 0.83 keV pulses of different pulse energies. We observed a strong dependence of the damage mechanism on the pulse energy. For low energies, surface roughening developed [Fig. 1(a)], and for somewhat higher energies, ablation and cracking occurred, [Fig. 1(b) and 1(c)]. For even higher pulse energies, substantial ablation and cracking was observed [Fig. 1(d)1(f)].

We determined the threshold for damage from the energy dependence of the area of each damage spot as seen in the SEM images by a method described in [9

9. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]

]. Assuming the beam has a elliptical Gaussian profile, and that the beam interacts locally with the material, the damage area should scale linearly with the logarithm of the energy above a threshold value. The threshold energy for damage is given by the x intercept, and the slope of the curve gives the beam size. The data for B4C are shown in Fig. 2
Fig. 2 Damage area as a function of the logarithm of the beam energy for bulk B4C exposed at a photon energy of 0.83 keV. Only the data points plotted as solid squares are included in the linear fit since at high pulse energies (open squares) fracture in the sample leads to significantly larger damage areas.
. We see the expected linear behavior up to an energy of about 0.8 mJ, above which substantial cracking takes place. Applying this method to the low energy linear part of the curve, we obtain a beam area of 144 μm2, in close agreement with intensity measurements using beam imprints through focus [10

10. J. Krzywinski, et al., Focused beam properties in the High-Field AMO chamber, unpublished.

]. From the intercept in Fig. 2, the damage threshold is 31 μJ, which corresponds to a fluence of 2.7 J/cm2. This is close to the melt threshold of 2.2 to 2.6 J/cm2, calculated from the x-ray absorption cross section [11

11. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z-1–92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993). [CrossRef]

] and the thermodynamic properties of B4C [12

12. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/

].

Figure 4
Fig. 4 SEM pictures of a SiC film exposed to single XFEL pulses at 0.83 keV and peak fluences of (a) 1.0, (b) 1.6, (c) 2.9, (d) 5.8, (e) 14.8, and (f) 57.5 J/cm2.
shows SEM pictures of a 1 μm SiC film after exposure to the XFEL beam. The x-ray attenuation length in this case is 1.0 μm, comparable to the film thickness. The damage morphology is similar to the bulk B4C case. Using the damage area versus pulse energy method, we obtain a beam area of 209 μm2 and a damage threshold fluence of 0.62 J/cm2. This fluence is somewhat lower than the melt threshold of 1.2 to 1.7 J/cm2 for SiC. At the measured damage threshold, the fluence under the SiC layer is 0.30 J/cm2, which is small compared to the melt threshold of bulk Si of 0.47 to 1.1 J/cm2.

4. Discussion

We now compare the damage behavior observed on similar materials at lower photon energies at FLASH [2

2. S. P. Hau-Riege, R. A. London, R. M. Bionta, D. Ryutov, R. Soufli, S. Bajt, M. A. McKernan, S. L. Baker, J. Krzywinski, R. Sobierajski, R. Nietubyc, D. Klinger, J. B. Pelka, M. Jurek, L. Juha, J. Chalupský, J. Cihelka, V. Hájková, A. Velyhan, J. Krása, K. Tiedtke, S. Toleikis, H. Wabnitz, M. Bergh, C. Caleman, and N. Timneanu, “Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation,” Appl. Phys. Lett. 95(11), 111104 (2009). [CrossRef]

,3

3. S. P. Hau-Riege, R. A. London, R. M. Bionta, M. A. McKernan, S. L. Baker, J. Krzywinski, R. Sobierajski, R. Nietubyc, J. B. Pelka, M. Jurek, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, A. Velyhan, J. Krasa, J. Kuba, K. Tiedtke, S. Toleikis, Th. Tschentscher, H. Wabnitz, M. Bergh, C. Caleman, K. Sokolowski-Tinten, N. Stojanovic, and U. Zastrau, “Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength,” Appl. Phys. Lett. 90(17), 173128 (2007). [CrossRef]

] with the present LCLS results. In both cases, we observed that the damage thresholds of bulk materials are somewhat above the melt threshold, whereas the damage threshold for films is below. For photon energies up to 92 eV, mechanical damage was not observed in B4C and SiC, but only uniform ablation and occasionally extrusions. At 0.83 keV, we observe ablation at low pulse energy and, additionally, severe mechanical damage such as cracking at higher pulse energy. In both experiments, photons are absorbed through photo ionization, leading to the emission of energetic photoelectrons into the conduction band. In the soft x-ray case, the valence electrons are excited into the continuum, whereas inner-shell ionization dominates for the harder x-ray case, leading to the subsequent emission of Auger electrons on the time scale of a few femtoseconds. The range of the photo and Auger electrons is less than 20 nm in both cases [14

14. D. C. Joy, Monte-Carlo Modeling for Electron Microscopy and Microanalysis, Oxford University Press, USA (1995).

], suggesting that initially, the heat stays localized, and that the difference in absorption processes should not have a strong direct effect on the damage mechanism. The energetic electrons interact with the bound electrons through electron impact ionization, and so thermalize within tens to hundreds of femtoseconds [15

15. B. Ziaja, R. A. London, and J. Hajdu, “Unified model of secondary electron cascades in diamond,” J. Appl. Phys. 97(6), 064905 (2005). [CrossRef]

]. On the time scale of a picosecond, the electron gas equilibrates with the ions [16

16. S. P. Hau-Riege, R. A. London, H. N. Chapman, and M. Bergh, “Soft-x-ray free-electron-laser interaction with materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 046403 (2007). [CrossRef] [PubMed]

]. Then, on the timescale of nano- to microseconds, the heat is extracted from the interaction region through phonon-assisted heat diffusion. One of the major differences between the experiments with EUV and x rays is the aspect ratio of the interaction region of the FEL beam with the material. Assuming cold opacities, at 0.83 keV, the x-ray penetration depths are 1.6 μm in B4C and 1.0 μm in SiC, whereas at 92 eV, the x-ray penetration depths are only 0.20 μm in B4C and 0.22 μm in SiC [11

11. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z-1–92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993). [CrossRef]

]. In the hard x-ray case, a significantly larger amount of energy is deposited in the material for the same peak dose. For damage mechanisms that depend primarily on the energy per surface area, new damage processes may be activated. For example, the formation of cracks requires that the surface energy of the crack be smaller than the released volumetric strain energy. Since the heated volume is larger for hard x-rays, more strain energy is available for mechanical deformation [17

17. D. Broek, Elementary Engineering Fracture Mechanics, Springer, USA (1982).

], which is in agreement with our experimental findings.

5. Summary

Acknowledgements

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. It has been partially supported by the Foundation for Fundamental Research on Matter (Stichting voor Fundamenteel Onderzoek der Materie, FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), the Ministry of Science and Higher Education of Poland, SPB nr. DESY/68/2007. This work was also partially funded by the Czech Ministry of Education (Grant Nos LC510, LC528, LA08024, and ME10046), and Academy of Sciences of the Czech Republic (Grant Nos Z10100523, IAA400100701, IAAX00100903, and KAN300100702). Portions of this research were carried out at the Linac Coherent Light Source, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

References and links

1.

Y. Ding, A. Brachmann, F.-J. Decker, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. Hays, Ph. Hering, Z. Huang, R. Iverson, H. Loos, A. Miahnahri, H.-D. Nuhn, D. Ratner, J. Turner, J. Welch, W. White, and J. Wu, “Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source,” Phys. Rev. Lett. 102(25), 254801 (2009). [CrossRef] [PubMed]

2.

S. P. Hau-Riege, R. A. London, R. M. Bionta, D. Ryutov, R. Soufli, S. Bajt, M. A. McKernan, S. L. Baker, J. Krzywinski, R. Sobierajski, R. Nietubyc, D. Klinger, J. B. Pelka, M. Jurek, L. Juha, J. Chalupský, J. Cihelka, V. Hájková, A. Velyhan, J. Krása, K. Tiedtke, S. Toleikis, H. Wabnitz, M. Bergh, C. Caleman, and N. Timneanu, “Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation,” Appl. Phys. Lett. 95(11), 111104 (2009). [CrossRef]

3.

S. P. Hau-Riege, R. A. London, R. M. Bionta, M. A. McKernan, S. L. Baker, J. Krzywinski, R. Sobierajski, R. Nietubyc, J. B. Pelka, M. Jurek, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, A. Velyhan, J. Krasa, J. Kuba, K. Tiedtke, S. Toleikis, Th. Tschentscher, H. Wabnitz, M. Bergh, C. Caleman, K. Sokolowski-Tinten, N. Stojanovic, and U. Zastrau, “Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength,” Appl. Phys. Lett. 90(17), 173128 (2007). [CrossRef]

4.

J. Chalupský, V. Hájková, V. Altapova, T. Burian, A. J. Gleeson, L. Juha, M. Jurek, H. Sinn, M. Störmer, R. Sobierajski, K. Tiedtke, S. Toleikis, Th. Tschentscher, L. Vyšín, H. Wabnitz, and J. Gaudin, “Damage of amorphous carbon induced by soft x-ray femtosecond pulses above and below the critical angle,” Appl. Phys. Lett. 95(3), 031111 (2009). [CrossRef]

5.

S. P. Hau-Riege, R. M. Bionta, D. D. Ryutov, and J. Krzywinski, “Measurement of x-ray free-electron-laser pulse energies by photoluminescence in nitrogen gas,” J. Appl. Phys. 103(5), 053306 (2008). [CrossRef]

6.

S. P. Hau-Riege, R. M. Bionta, D. D. Ryutov, R. A. London, E. Ables, K. I. Kishiyama, S. Shen, M. A. McKernan, D. H. McMahon, M. Messerschmidt, J. Krzywinski, P. Stefan, J. Turner, and B. Ziaja, “Near-ultraviolet luminescence of N2 irradiated by short X-ray pulses,” Phys. Rev. Lett. 105(4), 043003 (2010). [CrossRef] [PubMed]

7.

K. Tiedtke, A. Azima, N. von Bargen, L. Bittner, S. Bonfigt, S. Düsterer, B. Faatz, U. Frühling, M. Gensch, Ch. Gerth, N. Guerassimova, U. Hahn, T. Hans, M. Hesse, K. Honkavaar, U. Jastrow, P. Juranic, S. Kapitzki, B. Keitel, T. Kracht, M. Kuhlmann, W. B. Li, M. Martins, T. Nuñez, E. Plönjes, H. Redlin, E. L. Saldin, E. A. Schneidmiller, J. R. Schneider, S. Schreiber, N. Stojanovic, F. Tavella, S. Toleikis, R. Treusch, H. Weigelt, M. Wellhöfer, H. Wabnitz, M. V. Yurkov, and J. Feldhaus, “The soft x-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations,” N. J. Phys. 11(2), 023029 (2009). [CrossRef]

8.

R. Soufli, S. L. Baker, J. C. Robinson, E. M. Gullikson, T. J. McCarville, M. J. Pivovaroff, P. Stefan, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009). [CrossRef]

9.

J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]

10.

J. Krzywinski, et al., Focused beam properties in the High-Field AMO chamber, unpublished.

11.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z-1–92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993). [CrossRef]

12.

NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/

13.

S. P. Hau-Riege, R. A. London, R. M. Bionta, R. Soufli, D. Ryutov, M. Shirk, S. L. Baker, P. M. Smith, and P. Nataraj, “Multiple pulse thermal damage thresholds of materials for x-ray free electron laser optics investigated with an ultraviolet laser,” Appl. Phys. Lett. 93(20), 201105 (2008). [CrossRef]

14.

D. C. Joy, Monte-Carlo Modeling for Electron Microscopy and Microanalysis, Oxford University Press, USA (1995).

15.

B. Ziaja, R. A. London, and J. Hajdu, “Unified model of secondary electron cascades in diamond,” J. Appl. Phys. 97(6), 064905 (2005). [CrossRef]

16.

S. P. Hau-Riege, R. A. London, H. N. Chapman, and M. Bergh, “Soft-x-ray free-electron-laser interaction with materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 046403 (2007). [CrossRef] [PubMed]

17.

D. Broek, Elementary Engineering Fracture Mechanics, Springer, USA (1982).

OCIS Codes
(160.4670) Materials : Optical materials
(340.0340) X-ray optics : X-ray optics

ToC Category:
X-ray Optics

History
Original Manuscript: August 16, 2010
Manuscript Accepted: October 5, 2010
Published: October 29, 2010

Citation
S. P. Hau-Riege, R. A. London, A. Graf, S. L. Baker, R. Soufli, R. Sobierajski, T. Burian, J. Chalupsky, L. Juha, J. Gaudin, J. Krzywinski, S. Moeller, M. Messerschmidt, J. Bozek, and C. Bostedt, "Interaction of short x-ray pulses 
with low-Z x-ray optics materials 
at the LCLS free-electron laser," Opt. Express 18, 23933-23938 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23933


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Ding, A. Brachmann, F.-J. Decker, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. Hays, Ph. Hering, Z. Huang, R. Iverson, H. Loos, A. Miahnahri, H.-D. Nuhn, D. Ratner, J. Turner, J. Welch, W. White, and J. Wu, “Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source,” Phys. Rev. Lett. 102(25), 254801 (2009). [CrossRef] [PubMed]
  2. S. P. Hau-Riege, R. A. London, R. M. Bionta, D. Ryutov, R. Soufli, S. Bajt, M. A. McKernan, S. L. Baker, J. Krzywinski, R. Sobierajski, R. Nietubyc, D. Klinger, J. B. Pelka, M. Jurek, L. Juha, J. Chalupský, J. Cihelka, V. Hájková, A. Velyhan, J. Krása, K. Tiedtke, S. Toleikis, H. Wabnitz, M. Bergh, C. Caleman, and N. Timneanu, “Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation,” Appl. Phys. Lett. 95(11), 111104 (2009). [CrossRef]
  3. S. P. Hau-Riege, R. A. London, R. M. Bionta, M. A. McKernan, S. L. Baker, J. Krzywinski, R. Sobierajski, R. Nietubyc, J. B. Pelka, M. Jurek, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, A. Velyhan, J. Krasa, J. Kuba, K. Tiedtke, S. Toleikis, Th. Tschentscher, H. Wabnitz, M. Bergh, C. Caleman, K. Sokolowski-Tinten, N. Stojanovic, and U. Zastrau, “Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength,” Appl. Phys. Lett. 90(17), 173128 (2007). [CrossRef]
  4. J. Chalupský, V. Hájková, V. Altapova, T. Burian, A. J. Gleeson, L. Juha, M. Jurek, H. Sinn, M. Störmer, R. Sobierajski, K. Tiedtke, S. Toleikis, Th. Tschentscher, L. Vyšín, H. Wabnitz, and J. Gaudin, “Damage of amorphous carbon induced by soft x-ray femtosecond pulses above and below the critical angle,” Appl. Phys. Lett. 95(3), 031111 (2009). [CrossRef]
  5. S. P. Hau-Riege, R. M. Bionta, D. D. Ryutov, and J. Krzywinski, “Measurement of x-ray free-electron-laser pulse energies by photoluminescence in nitrogen gas,” J. Appl. Phys. 103(5), 053306 (2008). [CrossRef]
  6. S. P. Hau-Riege, R. M. Bionta, D. D. Ryutov, R. A. London, E. Ables, K. I. Kishiyama, S. Shen, M. A. McKernan, D. H. McMahon, M. Messerschmidt, J. Krzywinski, P. Stefan, J. Turner, and B. Ziaja, “Near-ultraviolet luminescence of N2 irradiated by short X-ray pulses,” Phys. Rev. Lett. 105(4), 043003 (2010). [CrossRef] [PubMed]
  7. K. Tiedtke, A. Azima, N. von Bargen, L. Bittner, S. Bonfigt, S. Düsterer, B. Faatz, U. Frühling, M. Gensch, Ch. Gerth, N. Guerassimova, U. Hahn, T. Hans, M. Hesse, K. Honkavaar, U. Jastrow, P. Juranic, S. Kapitzki, B. Keitel, T. Kracht, M. Kuhlmann, W. B. Li, M. Martins, T. Nuñez, E. Plönjes, H. Redlin, E. L. Saldin, E. A. Schneidmiller, J. R. Schneider, S. Schreiber, N. Stojanovic, F. Tavella, S. Toleikis, R. Treusch, H. Weigelt, M. Wellhöfer, H. Wabnitz, M. V. Yurkov, and J. Feldhaus, “The soft x-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations,” N. J. Phys. 11(2), 023029 (2009). [CrossRef]
  8. R. Soufli, S. L. Baker, J. C. Robinson, E. M. Gullikson, T. J. McCarville, M. J. Pivovaroff, P. Stefan, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009). [CrossRef]
  9. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]
  10. J. Krzywinski, et al., Focused beam properties in the High-Field AMO chamber, unpublished.
  11. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z-1–92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993). [CrossRef]
  12. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/
  13. S. P. Hau-Riege, R. A. London, R. M. Bionta, R. Soufli, D. Ryutov, M. Shirk, S. L. Baker, P. M. Smith, and P. Nataraj, “Multiple pulse thermal damage thresholds of materials for x-ray free electron laser optics investigated with an ultraviolet laser,” Appl. Phys. Lett. 93(20), 201105 (2008). [CrossRef]
  14. D. C. Joy, Monte-Carlo Modeling for Electron Microscopy and Microanalysis, Oxford University Press, USA (1995).
  15. B. Ziaja, R. A. London, and J. Hajdu, “Unified model of secondary electron cascades in diamond,” J. Appl. Phys. 97(6), 064905 (2005). [CrossRef]
  16. S. P. Hau-Riege, R. A. London, H. N. Chapman, and M. Bergh, “Soft-x-ray free-electron-laser interaction with materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 046403 (2007). [CrossRef] [PubMed]
  17. D. Broek, Elementary Engineering Fracture Mechanics, Springer, USA (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited