OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24504–24509
« Show journal navigation

1x4 reconfigurable demultiplexing filter based on free-standing silicon racetrack resonators

Po Dong, Wei Qian, Hong Liang, Roshanak Shafiiha, Xin Wang, Dazeng Feng, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24504-24509 (2010)
http://dx.doi.org/10.1364/OE.18.024504


View Full Text Article

Acrobat PDF (996 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a 1x4 reconfigurable demultiplexing filter based on cascaded thermally tunable silicon racetrack resonators with ultralow tuning powers. The use of free-standing silicon resonators with undercut structures significantly reduces the tuning power, with a figure of ~2.9 mW per free spectral range. Even with the presence of thermal crosstalk between two adjacent resonators, we demonstrate multiplexing functionality for channel spacings of 200 GHz, 100 GHz, and 50 GHz, with channel wavelengths aligned to International Telecommunication Union (ITU) grid specifications. Crosstalk values for 200 GHz and 50 GHz channel spacings are less than −20 dB and −11.5 dB, respectively. The total power to achieve this performance is in the range of 1.84 mW to 2.4 mW. Such low-power, compact, and reconfigurable filters are particularly useful in chip-scale optical interconnects.

© 2010 OSA

1. Introduction

Cascaded thermally tunable microcavities may address all of these challenges [13

13. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]

]. Large tunable ranges can be realized by utilizing silicon’s thermo-optic effect, which can compensate resonance variation from both fabrication and environmental temperature fluctuations. Silicon microcavities can have a bending radius down to a few microns, resulting in a channel area possibly less than 100 µm2. In addition, as the resonant wavelength can be tuned individually for each microcavity, the filters can be configurable in both wavelength and channel spacing. Another important advantage is that each microcavity can have independent add-drop functionality and therefore be flexibly positioned on chips. The key challenge, however, is to reduce tuning powers. Previously demonstrated thermally tunable microcavities usually have relatively large tuning powers of 20 mW-100 mW to achieve one free spectral range (FSR) [13

13. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]

19

19. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with directly integrated thermal microphotonics,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2009), pp. 1 – 2.

]. For a transmission data rate of 25 Gbps, this thermal tuning power will add up to 1-4 pJ per bit in an optical link. Recently, it was demonstrated that the tuning power can be as low as 2.4 mW per FSR using free-standing silicon microcavities [20

20. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant filters,” IEEE Summer Topical Meet. On Optical Networks and Devices for Data Centers 18, 8406–8411 (2010).

,21

21. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010). [CrossRef] [PubMed]

]. With this amount of power, the energy consumption is about 10-100 fJ/bit for a data rate of 25 Gbps, depending on how large a tuning range is required. These results further validate the use of silicon microcavities in chip-level optical interconnects.

In this paper, we report a 1x4 reconfigurable demultiplexing filter based on cascaded thermally tunable silicon microcavities with ultralow tuning powers. The use of free-standing silicon microcavities with undercut structures significantly reduces the tuning power, with a figure of ~2.9 mW per free spectral range. Even with thermal crosstalk between two adjacent resonators, we demonstrate multiplexing functionality for channel spacings of 200 GHz, 100 GHz, and 50 GHz, with channel wavelengths aligned to International Telecommunication Union (ITU) grid specifications. The achieved channel crosstalk values for 200 GHz and 50 GHz channel spacings are less than −20 dB and −11.5 dB, respectively.

2. Device structure and fabrication

3. Heater efficiency and thermal crosstalk

4. Demonstration of reconfigurable WDM filter

We demonstrate reconfigurable multiplexing functionality by aligning the four resonant wavelengths to ITU grid wavelengths. Four source-meters are used to drive four heaters. With the heating efficiency from the last section, the resonance shift can be expressed by
Δλ=CP
(1)
where Δλand P are the vectors of the required wavelength shift and the applied powers, the matrix Cincludes the elements Cij obtained in the last section. The above equation has already included the effect of thermal crosstalk. From Eq. (1), we calculate the required heating power as

P=C1Δλ
(2)

As an example, we present spectra before tuning and after tuning to achieve 200 GHz channel spacing and ITU channels 45-51 in Fig. 3
Fig. 3 (a) Drop port spectra before tuning. (b) Drop port spectra after thermal tuning to achieve 200 GHz channel spacing.
. The calculated powers from Eq. (2) are (0.30, 0.14, 0.61, 0.62) mW and the experimentally applied powers are (0.32, 0.15, 0.66, 0.71) mW. They agree reasonably well. Total power to achieve this WDM filtering functionality is 1.84 mW. The drop spectra in Fig. 3 are normalized to the maximal power at the through port. The transmissions at resonance approximately represent device insertion loss from the resonators themselves, which are 1.5-2.5 dB for four resonators. The quality factors are 9000 for the first three resonators but 12000 for the fourth resonator. The quality factor variation may come from the gap variation between the bus waveguide and resonators. The worst-case optical crosstalk among four resonators is less than −20 dB, as shown in Fig. 3(b). Reconfigurablity is demonstrated by aligning the four resonances to ITU grid wavelengths with channel spacings of 100 GHz and 50 GHz, as shown in Fig. 4
Fig. 4 Drop port spectra after thermal tuning to achieve 100 GHz (a) and 50 GHz (b) channel spacing.
. For 100 GHz, the chosen wavelengths are channels ITU 37 – ITU 40. For 50 GHz, the chosen wavelengths are ITU 38 – ITU 39, and their 50 GHz offset wavelengths. The total powers applied are 2.4 mW and 2.16 mW for Fig. 4(a) and 4(b), respectively. As we decrease the channel spacing, the optical crosstalk between different channels increases. We achieve <-16 dB and <-11.5 dB crosstalk for 100 GHz and 50 GHz, respectively. Design of narrower bandwidth resonators would reduce the optical crosstalk further. However, this limits the data rates of transmitted signals. Careful trade-off between resonator bandwidth and channel crosstalk needs to be considered in applications. Using high-order coupled-ring resonators can reduce the channel crosstalk, at the expense of higher tuning power and larger device area [22

22. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kartner, H. I. Smith, and E. P. Ippen, “Eleven-channel Second-order silicon microring-resonator filterbank with tunable channel spacing,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO/QELS 2010), paper CMS5.

].

5. Discussion and conclusion

In this paper, we demonstrate the feasibility of reconfigurable WDM filtering functionality using cascaded thermally tunable microcavities. We solve the key challenge of tuning power by using free-standing silicon resonators with undercuts. The low thermal tuning power is realized due to the excellent thermal isolation from the air gap between resonators and silicon substrates. As presented in Ref. [21

21. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010). [CrossRef] [PubMed]

], the tuning time is about ~170 µs, which may be fast enough for tuning the wavelength. Considering the achieved low tuning power of 2.9 mW per FSR for an individual resonator, it would add a maximum power of 11.6 mW to realize fully reconfigurable WDM filters. The demonstrated WDM filters have advantages which include compactness, reconfigurablility, and the ability to compensate resonance variations from both fabrication and temperature variations. However, some challenges still remain, such as closed-loop control of resonances. We note that a few attempts have been made to solve this problem, by either using on-chip temperature sensors [23

23. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2010), paper CThJ3.

] or detecting scattering light from ring resonators [24

24. Q. Xu, “Silicon modulator based on coupled microring resonators,” in Integrated Photonics Research, Silicon and Nanophotonics (OSA 2010), paper IWA3.

]. Further optimization of thermal control techniques without costing too much power is necessary. Nevertheless, the demonstrated low power/energy consumption in this paper validates the use of silicon microcavities to realize WDM filters in chip-level optical interconnects.

Acknowledgements

The authors acknowledge partial funding of this work by Defense Advanced Research Projects Agency (DARPA) MTO office under UNIC program supervised by Dr. Jagdeep Shah (contract agreement with SUN Microsystems HR0011-08-9-0001). The authors greatly acknowledge Dr. C.-C. Kung, Dr. J. Fong and Dr. B. J. Luff from Kotura Inc. for their work in fabricating of the device and revising the manuscript, and Dr. K. Raj from Sun Labs at Oracle for helpful discussions. The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense. Approved for Public Release, Distribution Unlimited.

References and links

1.

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]

2.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic–photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 6–15 (2006).

3.

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006). [CrossRef]

4.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]

5.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009). [CrossRef]

6.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008). [CrossRef]

7.

J. Ahn, M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009). [CrossRef]

8.

A. Batten, J. Joshi, A. Orcutt, B. Khilo, C. Moss, W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-more processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009). [CrossRef]

9.

M. Popovic, Theory and design of high-index-contrast microphotonic circuits, PhD thesis, (MIT 2008).

10.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008). [CrossRef]

11.

F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon-on-insulator echelle grating WDM demultiplexers with two stigmatic points,” IEEE Photon. Technol. Lett. 21(23), 1743–1745 (2009). [CrossRef]

12.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), L673–L675 (2004). [CrossRef]

13.

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]

14.

M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009). [CrossRef] [PubMed]

15.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Multiple-channel silicon micro-resonator based filters for WDM applications,” Opt. Express 15(12), 7489–7498 (2007). [CrossRef] [PubMed]

16.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (2007), pp. 67–68.

17.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008). [CrossRef]

18.

D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, “Wavelength tuning and switching of a thermooptic microring resonator,” Proc. ECIO, pp. 395–398 (2003).

19.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with directly integrated thermal microphotonics,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2009), pp. 1 – 2.

20.

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant filters,” IEEE Summer Topical Meet. On Optical Networks and Devices for Data Centers 18, 8406–8411 (2010).

21.

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010). [CrossRef] [PubMed]

22.

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kartner, H. I. Smith, and E. P. Ippen, “Eleven-channel Second-order silicon microring-resonator filterbank with tunable channel spacing,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO/QELS 2010), paper CMS5.

23.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2010), paper CThJ3.

24.

Q. Xu, “Silicon modulator based on coupled microring resonators,” in Integrated Photonics Research, Silicon and Nanophotonics (OSA 2010), paper IWA3.

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optical Devices

History
Original Manuscript: September 14, 2010
Revised Manuscript: October 21, 2010
Manuscript Accepted: October 28, 2010
Published: November 9, 2010

Citation
Po Dong, Wei Qian, Hong Liang, Roshanak Shafiiha, Xin Wang, Dazeng Feng, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari, "1x4 reconfigurable demultiplexing filter based on free-standing silicon racetrack resonators," Opt. Express 18, 24504-24509 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24504


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  2. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic–photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 6–15 (2006).
  3. B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006). [CrossRef]
  4. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  5. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009). [CrossRef]
  6. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008). [CrossRef]
  7. J. Ahn, M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009). [CrossRef]
  8. A. Batten, J. Joshi, A. Orcutt, B. Khilo, C. Moss, W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-more processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009). [CrossRef]
  9. M. Popovic, Theory and design of high-index-contrast microphotonic circuits, PhD thesis, (MIT 2008).
  10. J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008). [CrossRef]
  11. F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon-on-insulator echelle grating WDM demultiplexers with two stigmatic points,” IEEE Photon. Technol. Lett. 21(23), 1743–1745 (2009). [CrossRef]
  12. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), L673–L675 (2004). [CrossRef]
  13. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]
  14. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009). [CrossRef] [PubMed]
  15. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Multiple-channel silicon micro-resonator based filters for WDM applications,” Opt. Express 15(12), 7489–7498 (2007). [CrossRef] [PubMed]
  16. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (2007), pp. 67–68.
  17. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008). [CrossRef]
  18. D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, “Wavelength tuning and switching of a thermooptic microring resonator,” Proc. ECIO, pp. 395–398 (2003).
  19. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with directly integrated thermal microphotonics,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2009), pp. 1 – 2.
  20. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant filters,” IEEE Summer Topical Meet. On Optical Networks and Devices for Data Centers 18, 8406–8411 (2010).
  21. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010). [CrossRef] [PubMed]
  22. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kartner, H. I. Smith, and E. P. Ippen, “Eleven-channel Second-order silicon microring-resonator filterbank with tunable channel spacing,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO/QELS 2010), paper CMS5.
  23. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2010), paper CThJ3.
  24. Q. Xu, “Silicon modulator based on coupled microring resonators,” in Integrated Photonics Research, Silicon and Nanophotonics (OSA 2010), paper IWA3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited