OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24673–24678
« Show journal navigation

Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials

Dawn N. Vitek, Erica Block, Yves Bellouard, Daniel E. Adams, Sterling Backus, David Kleinfeld, Charles G. Durfee, and Jeffrey A. Squier  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24673-24678 (2010)
http://dx.doi.org/10.1364/OE.18.024673


View Full Text Article

Acrobat PDF (3093 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simultaneous spatial and temporal focusing (SSTF) provides precise control of the pulse front tilt (PFT) necessary to achieve nonreciprocal writing in glass wherein the material modification depends on the sample scanning direction with respect to the PFT. The PFT may be adjusted over several orders of magnitude. Using SSTF nonreciprocal writing is observed for a large range of axial focal positions within the sample, and nonreciprocal ablation patterns on the surface of the sample are revealed. Further, the lower numerical aperture (0.03 NA) utilized with SSTF increases the rate of writing.

© 2010 Optical Society of America

1. Introduction

Three-dimensional (3D) micro- and nanoscale patterning with femtosecond lasers continues to gain novel applications in fields such as micro- and optofluidics, lithography and electronics. Recently, surface nanostructuring by irradiation with femtosecond laser pulses improved the absorption efficiency of thin film silicon solar cells [1

1. X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film,” Opt. Express 18, 19379–19385 (2010). [CrossRef] [PubMed]

]. Additionally, nanostructuring in doped glass was shown to have optical switching capabilities and, with only 150 nm spacing between bits, has application in compact optical memory storage [2

2. Y. Shimotsuma, M. Sakakura, K. Miura, J. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol. 7, 94–104 (2007). [PubMed]

]. The type of modification obtained from femtosecond laser exposure depends on the material composition and laser parameters. It has been suggested that femtosecond laser material modification in transparent materials be divided into three categories. In order of increasing intensity, these are: (type 1) a smooth, positive change in the refractive index; (type 2) form birefringence with associated anisotropic scattering; and (type 3) void formation [3

3. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001). [CrossRef]

5

5. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29, 119–121 (2004). [CrossRef] [PubMed]

]. Type 2 modifications are perhaps the least exploited, yet investigations of these modifications have revealed remarkable properties including strong polarization sensitivity. The form birefringence arises from subwavelength periodic variations in the refractive index along the dimension of light propagation and perpendicular to the direction of the electric field [6

6. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003). [CrossRef] [PubMed]

8

8. W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, “Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing,” Opt. Express 14, 10117–10124 (2006). [CrossRef] [PubMed]

]. These type 2 modifications were suggested by Cheng et al. as a candidate for a polarization-selective optical router [9

9. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009). [CrossRef] [PubMed]

]. Using an arrangement of type 2 structures, they selectively guided polarized light with the electric field parallel to that of the writing laser. Beresna and Kazansky created a polarization diffraction grating by writing adjacent lines of type 2 modifications with periodic rotation of the writing laser’s electric field [10

10. M. Beresna and P. G. Kazansky, “Polarization diffraction gratings produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35, 1662–1664 (2010). [CrossRef] [PubMed]

]. Under some conditions, type 2 modifications have the additional quality of dependence upon the sample’s scanning direction in that the characteristics of the modification change when the scan direction is reversed, in an effect called nonreciprocal or “quill” writing [11

11. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007). [CrossRef]

13

13. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93, 171109 (2008). [CrossRef]

]. This occurs even in centrosymmetric materials [12

12. B. Poumellec, M. Lancry, J.-C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16, 18354–18361 (2008). [CrossRef] [PubMed]

]. To further illuminate nonreciprocal writing, Yang et al. characterized type 2 modifications in one laser scanning direction and type 3 modifications in the reverse direction [13

13. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93, 171109 (2008). [CrossRef]

]. This phenomenon is due to pulse front tilt (PFT) [11

11. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007). [CrossRef]

, 13

13. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93, 171109 (2008). [CrossRef]

]. Kazansky et al. theorized that the intensity gradient established across the focal spot by the presence of PFT acts to displace electrons in the plasma by virtue of the ponderomotive force [11

11. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007). [CrossRef]

]. The PFT in combination with the direction of the movement of the sample affects the trapping and displacement of the electrons resulting in directionally-dependent writing. In practice, PFT may be imposed on the laser beam by tuning the laser’s grating compressor and quantified by measurements with a GRENOUILLE [13

13. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93, 171109 (2008). [CrossRef]

]. However, any adjustment to the parallelism of the gratings produces angular dispersion that necessarily results in spatial and temporal distortions at focus [14

14. K. Osvay and I. N. Ross, “On a pulse compressor with gratings having arbitrary orientation,” Opt. Commun. 105, 271–278 (1994). [CrossRef]

]. Consequently, the conditions for generating PFT are not easily translated between systems, so that deciphering the effect of PFT on nonreciprocal writing is confounded.

2. Experimental methods

The experimental setup, measurements and simulations were described in Vitek et al. [15

15. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18, 18086–18094 (2010). [CrossRef] [PubMed]

]. Briefly, 25 μJ pulses at 1 kHz were supplied from a Ti:Al2O3 chirped pulse amplification system centered at 800 nm. The SSTF system consisted of two gratings (600 l/mm, Thorlabs, #GR25-0608) that spatially chirped and then collimated the pulses. The ray-tracing model in Fig. 1 was simplified by representing the gratings in transmission, although they were, in fact, reflective. The angle of incidence (36°) on the gratings and the grating separation (630 mm) were selected to minimize second- and third-order dispersion. The beam incident on the focusing optic, which was a 25 mm focal length, 90-degree off-axis parabola (Janos Technology, #A8037-175), measured 8.4 mm and 0.55 mm full-width at half maximum (FWHM) in the spatially chirped and unchirped dimensions, respectively. At focus the spot size was 35 μm FWHM, giving a laser fluence of 0.88 J/cm2. The pulse width at focus was 74 fs FWHM.

Fig. 1 Ray-tracing model of the SSTF system. Green, blue and red rays show the central wavelength and the FHWM edges of the spectrum, respectively.

Nonreciprocal writing was monitored for variations in the scanning depth, rate, and direction and in the electric field polarization. The sample was a 500 μm thick fused quartz microscope slide (No. 24963-1, Polysciences, Inc.). We scanned the sample parallel to and perpendicular to the PFT at rates ranging from 5 μm/s to 50 μm/s. The electric field polarization was oriented either parallel to or perpendicular to the scanning direction.

3. Results and discussion

The PFT for our system was simulated by Fourier beam propagation [15

15. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18, 18086–18094 (2010). [CrossRef] [PubMed]

]. The predicted value for the PFT at focus was 16,000 fs/mm [Fig. 2(a)], which is more than five orders of magnitude larger PFT than was employed by Yang et al. [13

13. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93, 171109 (2008). [CrossRef]

]. The simulation predicted that the PFT changes proportionally with the spatial chirp. We quantified the spatial chirp in a parameter called the beam aspect ratio (BAR). The BAR is the quotient of two length measurements: the beam width in the spatially chirped dimension with the beam with in the spatially unchirped dimension. For our system, the BAR was 15. With no applied spatial chirp and assuming a symmetric, circular input beam spot, the BAR = 1 and the PFT = 0. When spatial chirp was introduced, the PFT was predicted to increase linearly with the BAR [Fig. 2(b)].

Fig. 2 (a) The simulated spatio-temporal intensity profile of the pulse at the focal plane where x is along the spatially chirped dimension. (b) The predicted relationship between the pulse front tilt (PFT) and the beam aspect ratio (BAR) for our system

Nonreciprocal writing was observed for scanning along the axis of PFT [Fig. 3(b) and 3(c)] but was not observed when scanning perpendicular to the PFT [Fig. 3(d)], supporting the claim that PFT causes nonreciprocal writing.

Fig. 3 (a) The orientation of the pulse front tilt at the focal plane (dashed line). The pulse arrives first on the left hand side of the focal spot. The scanning direction for the laser beam with respect to the sample for each written line in (b),(c) is indicated by blue arrows pointing to the left or the right. In (d) the scanning direction was perpendicular to the PFT. Each set of anti-parallel lines was imaged with bright field (top) and cross-polarized illumination (bottom). The orientation of the electric field, E, is marked with arrows in (b)–(d). The scanning rate was 10 μm/s, and the location of the focal plane was 284 μm beneath the surface of the sample. Scale bar, 50 μm.

We observed nonreciprocal writing for focal positions ranging from 230 μm to 500 μm beneath the surface of the 500 μm thick sample (Fig. 4). This is a much broader range than was seen by Yang et al. [13

13. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93, 171109 (2008). [CrossRef]

]. Under their experimental conditions (0.8 NA), ≥5 μm movement in either direction eliminated the directional-dependence of the writing.

Fig. 4 Nonreciprocal writing was examined at different focal depths, z, beneath the surface of the sample. Each set of anti-parallel lines was imaged with (a) bright field and (b) cross-polarized illumination. The scan rates for regions 1, 2 and 3 were 5 μm/s, 10 μm/s and 50 μm/s, respectively. Scale bar, 50 μm.

For focal positions ±54 μm outside of the 230 μm to 500 μm range, ablation occurred on the nearest surface. Interestingly, damage on the back surface showed nonreciprocal behavior (Fig. 5). Regularly spaced, 25 μm diameter wells were ablated in one direction. In the opposite direction Chevron-shaped structures were produced. The spacing of the structures showed a small but not proportionate increase when the scan rate was doubled from 5 μm/s to 10 μm/s between regions 1 and 2. For the highest scan rate of 50 μm/s, the structures became irregular. Organized surface patterning may find novel applications for femtosecond laser fabrication. For example, herringbone or Chevron-shaped structures have assisted with particle alignment in microfluidic channels by modifying the flow dynamics [20

20. C.-H. Hsu, D. D. Carlo, C. Chen, D. Irimia, and M. Toner, “Microvortex for focusing, guiding and sorting of particles,” Lab Chip 8, 2128–2134 (2008). [CrossRef] [PubMed]

, 21

21. J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9, 1942–1950 (2009). [CrossRef] [PubMed]

]. Also, surface patterning provides additional functionalities for femtosecond laser processing of microelectromechanical systems (MEMS) [22

22. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005). [CrossRef] [PubMed]

].

Fig. 5 Wells (top) or Chevron structures (bottom) were ablated for anti-parallel scanning directions on the back surface of the sample. The scan rates for regions 1, 2 and 3 were 5 μm/s, 10 μm/s and 50 μm/s, respectively. The laser’s electric field was oriented along the scanning direction. The blue arrows coincide with the orientation described in Fig. 3. Scale bar, 50 μm.

4. Conclusion

Acknowledgments

We thank Mariana Potcoava for her assistance with imaging. D. Vitek, J. Squier, S. Backus, and C. Durfee gratefully acknowledge support for this work from the Air Force Office of Scientific Research (AFOSR) ( FA9550-07-10026 and FA9550-10-C-0017). J. Squier, E. Block and D. Kleinfeld acknowledge support from the National Institutes of Health (NIH) ( EB003832).

References and links

1.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film,” Opt. Express 18, 19379–19385 (2010). [CrossRef] [PubMed]

2.

Y. Shimotsuma, M. Sakakura, K. Miura, J. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, “Application of femtosecond-laser induced nanostructures in optical memory,” J. Nanosci. Nanotechnol. 7, 94–104 (2007). [PubMed]

3.

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001). [CrossRef]

4.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short ir laser pulses,” Opt. Commun. 191, 333–339 (2001). [CrossRef]

5.

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29, 119–121 (2004). [CrossRef] [PubMed]

6.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003). [CrossRef] [PubMed]

7.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005). [CrossRef]

8.

W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, “Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing,” Opt. Express 14, 10117–10124 (2006). [CrossRef] [PubMed]

9.

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009). [CrossRef] [PubMed]

10.

M. Beresna and P. G. Kazansky, “Polarization diffraction gratings produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35, 1662–1664 (2010). [CrossRef] [PubMed]

11.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90, 151120 (2007). [CrossRef]

12.

B. Poumellec, M. Lancry, J.-C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16, 18354–18361 (2008). [CrossRef] [PubMed]

13.

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93, 171109 (2008). [CrossRef]

14.

K. Osvay and I. N. Ross, “On a pulse compressor with gratings having arbitrary orientation,” Opt. Commun. 105, 271–278 (1994). [CrossRef]

15.

D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18, 18086–18094 (2010). [CrossRef] [PubMed]

16.

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35, 1106–1108 (2010). [CrossRef] [PubMed]

17.

G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005). [CrossRef] [PubMed]

18.

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468–1476 (2005). [CrossRef] [PubMed]

19.

M. A. Coughlan, M. Plewicki, and R. J. Levis, “Parametric spatio-temporal control of focusing laser pulses,” Opt. Express 17, 15808–15820 (2009). [CrossRef] [PubMed]

20.

C.-H. Hsu, D. D. Carlo, C. Chen, D. Irimia, and M. Toner, “Microvortex for focusing, guiding and sorting of particles,” Lab Chip 8, 2128–2134 (2008). [CrossRef] [PubMed]

21.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9, 1942–1950 (2009). [CrossRef] [PubMed]

22.

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005). [CrossRef] [PubMed]

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.4000) Optical devices : Microstructure fabrication
(050.2555) Diffraction and gratings : Form birefringence
(050.6624) Diffraction and gratings : Subwavelength structures
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: September 22, 2010
Revised Manuscript: October 27, 2010
Manuscript Accepted: October 28, 2010
Published: November 10, 2010

Citation
Dawn N. Vitek, Erica Block, Yves Bellouard, Daniel E. Adams, Sterling Backus, David Kleinfeld, Charles G. Durfee, and Jeffrey A. Squier, "Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials," Opt. Express 18, 24673-24678 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24673


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, "Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film," Opt. Express 18, 19379-19385 (2010). [CrossRef] [PubMed]
  2. Y. Shimotsuma, M. Sakakura, K. Miura, J. Qiu, P. G. Kazansky, K. Fujita, and K. Hirao, "Application of femtosecond-laser induced nanostructures in optical memory," J. Nanosci. Nanotechnol. 7, 94-104 (2007). [PubMed]
  3. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, "Structural changes in fused silica after exposure to focused femtosecond laser pulses," Opt. Lett. 26, 1726-1728 (2001). [CrossRef]
  4. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, "Study of damage in fused silica induced by ultra-short ir laser pulses," Opt. Commun. 191, 333-339 (2001). [CrossRef]
  5. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, "Form birefringence and negative index change created by femtosecond direct writing in transparent materials," Opt. Lett. 29, 119-121 (2004). [CrossRef] [PubMed]
  6. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003). [CrossRef] [PubMed]
  7. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica," Appl. Phys. Lett. 87, 014104 (2005). [CrossRef]
  8. W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, "Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing," Opt. Express 14, 10117-10124 (2006). [CrossRef] [PubMed]
  9. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, "Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass," Opt. Express 17, 9515-9525 (2009). [CrossRef] [PubMed]
  10. M. Beresna, and P. G. Kazansky, "Polarization diffraction gratings produced by femtosecond laser nanostructuring in glass," Opt. Lett. 35, 1662-1664 (2010). [CrossRef] [PubMed]
  11. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, "‘Quill’ writing with ultrashort light pulses in transparent materials," Appl. Phys. Lett. 90, 151120 (2007). [CrossRef]
  12. B. Poumellec, M. Lancry, J.-C. Poulin, and S. Ani-Joseph, "Non reciprocal writing and chirality in femtosecond laser irradiated silica," Opt. Express 16, 18354-18361 (2008). [CrossRef] [PubMed]
  13. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, "Ultrashort-pulse laser calligraphy," Appl. Phys. Lett. 93, 171109 (2008). [CrossRef]
  14. K. Osvay, and I. N. Ross, "On a pulse compressor with gratings having arbitrary orientation," Opt. Commun. 105, 271-278 (1994). [CrossRef]
  15. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, "Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials," Opt. Express 18, 18086-18094 (2010). [CrossRef] [PubMed]
  16. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, "Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses," Opt. Lett. 35, 1106-1108 (2010). [CrossRef] [PubMed]
  17. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, "Simultaneous spatial and temporal focusing of femtosecond pulses," Opt. Express 13, 2153-2159 (2005). [CrossRef] [PubMed]
  18. D. Oron, E. Tal, and Y. Silberberg, "Scanningless depth-resolved microscopy," Opt. Express 13, 1468-1476 (2005). [CrossRef] [PubMed]
  19. M. A. Coughlan, M. Plewicki, and R. J. Levis, "Parametric spatio-temporal control of focusing laser pulses," Opt. Express 17, 15808-15820 (2009). [CrossRef] [PubMed]
  20. C.-H. Hsu, D. D. Carlo, C. Chen, D. Irimia, and M. Toner, "Microvortex for focusing, guiding and sorting of particles," Lab Chip 8, 2128-2134 (2008). [CrossRef] [PubMed]
  21. J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, "Multi-wavelength microflow cytometer using groove-generated sheath flow," Lab Chip 9, 1942-1950 (2009). [CrossRef] [PubMed]
  22. Y. Bellouard, A. Said, and P. Bado, "Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica," Opt. Express 13, 6635-6644 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited