OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26686–26694
« Show journal navigation

Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber

M.D. Pelusi, F. Luan, D.-Y. Choi, S.J. Madden, D.A.P. Bulla, B. Luther-Davies, and B.J. Eggleton  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26686-26694 (2010)
http://dx.doi.org/10.1364/OE.18.026686


View Full Text Article

Acrobat PDF (1359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first demonstration of optical phase conjugation (OPC) transmission of phase encoded and wavelength-division multiplexed (WDM) signals by the Kerr effect in a planar structured waveguide. The phase conjugated electric field of the signal is produced by four wave mixing pumped by a CW laser during co-propagating with the signal in a highly nonlinear waveguide fabricated in As2S3 glass. Experiments demonstrate the capability of the device to perform dispersion-free transmission through up to 225 km of standard single mode fiber for a 3 × 40 Gb/s WDM signal, with its channels encoded as return-to-zero differential phase shift keying and spaced either 100 or 200 GHz apart. This work represents an important milestone towards demonstrating advanced signal processing of high-speed and broadband optical signals in compact planar waveguides, with the potential for monolithic optical integration.

© 2010 OSA

1. Introduction

OPC has been demonstrated on a variety of platforms including periodically poled lithium niobate (PPLN) [2

2. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003). [CrossRef]

7

7. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007). [CrossRef]

, 13

13. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006). [CrossRef]

15

15. P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18119. [CrossRef] [PubMed]

]; semiconductor optical amplifiers (SOAs) [16

16. J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s conventional and carrier-suppressed RZ signals transmission over 200 km standard fiber by using mid-span optical phase conjugation (invited, OECC Awarded),” IEICE Trans. on Comm. E 86-B, 1555–1561 (2003).

]; highly nonlinear optical fiber (HNLF) [12

12. S. Watanabe, “Optical signal processing using nonlinear fibers,” J. Opt. Fiber. Commun. Rep. 3(1), 1–24 (2005). [CrossRef]

]; and more recently, silicon chip waveguides [17

17. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007). [CrossRef] [PubMed]

]. Generally, these schemes involve co-propagating the signal with a CW beam at different frequency to pump a nonlinear process, which produces a new (idler) electrical field, Ai, of amplitude AiAp 2 ∙As*, where Ap and As* are the electrical field amplitude of the pump wave and phase conjugated signal, respectively. In the case of PPLN, the operation is efficiently performed by a cascaded χ(2) process in order to produce Ai in the wavelength vicinity of As. One approach uses the frequency doubled wave produced from second harmonic generation (SHG) of an input CW pump to simultaneously drive difference frequency generation (DFG) with the signal [3

3. M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999). [CrossRef]

5

5. H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:. [CrossRef]

]. An alternative dual pump scheme uses the high frequency wave produced by sum-frequency generation (SFG) between the input CW pump and signal, to simultaneously undertake DFG with a second input CW pump whose frequency is in the vicinity of the first [6

6. X. Wu, W.-R. Peng, V. Arbab, J. Wang, and A. Willner, “Tunable optical wavelength conversion of OFDM signal using a periodically-poled lithium niobate waveguide,” Opt. Express 17(11), 9177–9182 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-9177. [CrossRef] [PubMed]

], [7

7. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007). [CrossRef]

]. While the single CW pump approach exhibits broadband flat conversion efficiency, the wavelength tuning flexibility of Ai is limited since the CW source wavelength must be near the specific phase matching wavelength of the device, which depends on its physical parameters, and the operating temperature. The dual pump scheme relaxes this requirement, but the conversion bandwidth is more limited.

In this paper, we report the first demonstration of optical phase conjugation (OPC) transmission of phase encoded and wavelength-division multiplexed (WDM) signals by the Kerr effect in a planar waveguide fabricated in As2S3 glass, and apply it to dispersion compensate a long distance optical fiber transmission link. The experiments based on a 6 cm long waveguide demonstrate dispersion-free transmission over as much as 225 km of standard single mode optical fiber (SSMF) for a 3 × 40 Gb/s WDM signal encoded as return-to-zero (RZ), differential phase shift keying (DPSK) format, and with 100 and 200 GHz channel spacing. The performance shown draws on various key features of the waveguide, namely, (i) its combined high nonlinear index, n2, low TPA, and reduced effective mode area (Aeff) allowing a high nonlinear response with moderate launch powers into a short, cm-scale length device, (ii) a dispersion-shifted waveguide design for allowing broadband phase-matched FWM, (iii) improved power handling and low propagation loss, and (iv) anti-reflection coated end facets to minimize Fabry-Perot interference effects for the narrow linewidth CW pump source.

2. Waveguide characteristics

The fabrication of the 6 cm long waveguide involved deposition of a 0.85 μm thick film of As2S3 by thermal evaporation onto a silica-on-silicon substrate. The deposited films were formed into a series of 6 cm long, 2 μm wide ribs by creating the surrounding 0.35 μm deep trenches using standard photolithography and dry-etching [23

23. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414. [CrossRef] [PubMed]

, 24

24. D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010). [CrossRef]

]. A low refractive index inorganic polymer glass (RPO Pty Ltd, IPG) was applied as an over-cladding. The high index of the As2S3 core (n0 ≈2.38 at 1550 nm) led to a large index contrast with the cladding, and allowed the effective mode area, Aeff, to be reduced to ≈1.2 μm2. This, combined with the high n2 of As2S3 glass (≈110 times silica), enhanced the nonlinearity coefficient defined as γ = 2π·n2/λ·Aeff at the optical wavelength, λ = 1550 nm to ≈9,900 W−1km−1. This is on the order of 500 times larger than for silica based HNLF [25

25. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-loss and low-dispersion-slope highly nonlinear fibers,” J. Lightwave Technol. 23(11), 3615–3624 (2005). [CrossRef]

]. The small cross-sectional area of the rib also increased the waveguide dispersion for the TM mode due to the increased field penetration of the low index cladding. Importantly, the induced dispersion has an opposite sign to the large material dispersion of As2S3 glass (−364 ps/nm/km), leading to a drastic reduction in the net total dispersion to ≈28 ps/nm.km at 1550 nm [10

10. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514. [CrossRef] [PubMed]

], and a reversal of its sign from normal to anomalous. The dependence of dispersion on the rib dimensions has been determined by numerical modeling [22

22. M. R. Lamont, C.M de Sterke, and B.J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9458. [CrossRef] [PubMed]

]. Anti-reflection (AR) coatings based on SiO2/TiO2 were applied to the hand-cleaved end facets of the waveguide to eliminate Fabry-Perot resonances within the chip. Images of the device are shown in Fig. 1(c).

The capability of the device for broadband phase-matched FWM over a wide ranging (λpλs) was previously characterized by using a 40 Gb/s intensity modulated signal to pump FWM with a weak CW probe [10

10. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514. [CrossRef] [PubMed]

]. The results demonstrated broadband wavelength conversion across the S, C and L bands of the optical communication spectrum. Tunable wavelength conversion of a single channel 40 Gb/s RZ-DPSK signal was also demonstrated with preservation of the phase encoding by pumping a FWM process with a CW laser [11

11. M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010). [CrossRef]

].

3. Transmission experiments and results

3.1 OPC in a 225 km link

The OPC set-up is shown in Fig. 2(b), and used a CW external-cavity laser diode, which was amplified and coupled with the signal into the waveguide via lensed fibers. A WDM coupler was inserted before the waveguide as a fixed wavelength BPF to reject amplifier noise outside the 1546-1565 nm band. Another was inserted at the output to isolate the FWM idler.

The total average launch power at the input connector of the waveguide was 400 mW, and the power ratio of the CW laser to signal was 7.8 dB, which was optimized to maximize Ai. The polarization state of both the signal and CW pump were aligned using polarization controllers (PC) in order to couple into the TM mode of the waveguide. The total insertion loss for the TM mode measured from the waveguide input to output fiber connector was 13 dB, which was mainly comprised of nearly 5 dB loss per facet for coupling to SSMF. This translates to a total power within the waveguide of ≈130 mW. Figure 3(b) compares the optical spectrum at both the waveguide input and output, showing the generation of the three idler channels from between 1532 and 1535 nm. The power ratio of the combined idler to signal channels at the waveguide output was ≈−26 dB. From this, the FWM conversion efficiency, η, defined as the power ratio of the total launched input signal to output idler) is obtained by deducting the 13 dB insertion loss of the device (in dB units).

3.2 OPC in a 162 km link

4. Discussion

Reducing propagation losses is another route for improving η. For the sample used in our experiment, this was ≈0.5 dB/cm for the TM mode. Recent optimization of the fabrication process has yielded lower losses of 0.3 dB/cm for the latest waveguide samples of similar length and rib dimension [24

24. D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010). [CrossRef]

]. This was achieved by minimizing surface roughening through optimizing the thermal annealing temperature of the deposited As2S3 films (to avoid film evaporation at excessive temperatures, while allowing sufficient film relaxation), and developing new protective layers for the lithographic process (to prevent chemical attack of As2S3 during resist processing and stripping). Another option is to fabricate waveguides from more highly nonlinear chalcogenide glass compositions, such as the ternary Ge-As-Se system, whose n2 is almost triple that of As2S3. Nanowire waveguides with very small Aeff have been fabricated from Ge11.5As24Se64.5 to achieve over ten times larger γ than for the As2S3 chip [28

28. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18866. [CrossRef] [PubMed]

].

A lower propagation loss coefficient would also benefit the use of longer waveguides to further boost the nonlinear response [23

23. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414. [CrossRef] [PubMed]

]. Overall, numerical modeling of OPC for a single channel RZ-DPSK signal for the same experimental parameters (including a 400 mW total launch power but just a slightly lower input CW:signal power ratio of 6.2 dB) predicts that η could be increased by 16 dB if coupling losses were reduced from 5 to 1 dB/facet, and by a further 5 dB if both also the waveguide length was increased to 14 cm, and the propagation loss reduced from 0.5 to 0.3 dB/cm. Measurements with a CW laser source have confirmed that the waveguide is capable of handling coupled average powers of at least 300 mW.

Another practical consideration is optical polarization. In our experiments, polarization controllers were required to ensure the states of polarization (SOP) for both the incoming signal and CW pump wave were aligned for coupling to the TM mode of the waveguide. However, polarization independent operation could be realized by adopting schemes such as a bi-directional fiber loop, as demonstrated with PPLN [5

5. H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:. [CrossRef]

], [13

13. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006). [CrossRef]

15

15. P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18119. [CrossRef] [PubMed]

]. In that approach, the signal and CW beam are launched into a polarization beam splitter (PBS), whose output pair of orthogonally polarized and polarization maintaining fibers are connected to either end of the waveguide to form a fiber-loop. A cross splice on the TE mode output of the PBS rotates its SOP by 90 degrees so that bi-directional TM mode coupling to the waveguide is assured. Thus, by fixing the SOP of the CW pump into the PBS to 45 degrees (so that its power is split equally), polarization insensitive OPC can be achieved for arbitrary SOP of the input signal.

Conclusions

Acknowledgements

This work was supported by the Australian Research Council (ARC) through its ARC Centres of Excellence and Federation Fellowship programs.

References and links

1.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17252. [CrossRef] [PubMed]

2.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003). [CrossRef]

3.

M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999). [CrossRef]

4.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000). [CrossRef]

5.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:. [CrossRef]

6.

X. Wu, W.-R. Peng, V. Arbab, J. Wang, and A. Willner, “Tunable optical wavelength conversion of OFDM signal using a periodically-poled lithium niobate waveguide,” Opt. Express 17(11), 9177–9182 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-9177. [CrossRef] [PubMed]

7.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007). [CrossRef]

8.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009). [CrossRef]

9.

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16735. [CrossRef] [PubMed]

10.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514. [CrossRef] [PubMed]

11.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010). [CrossRef]

12.

S. Watanabe, “Optical signal processing using nonlinear fibers,” J. Opt. Fiber. Commun. Rep. 3(1), 1–24 (2005). [CrossRef]

13.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006). [CrossRef]

14.

H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010). [CrossRef] [PubMed]

15.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18119. [CrossRef] [PubMed]

16.

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s conventional and carrier-suppressed RZ signals transmission over 200 km standard fiber by using mid-span optical phase conjugation (invited, OECC Awarded),” IEICE Trans. on Comm. E 86-B, 1555–1561 (2003).

17.

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007). [CrossRef] [PubMed]

18.

Z. Pan, C. Yub, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010). [CrossRef]

19.

G. Wellbrock and T. J. Xia, “The road to 100g deployment [Commentary],” IEEE Commun. Mag. 48(3), S14–S18 (2010). [CrossRef]

20.

S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008). [CrossRef]

21.

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-439. [CrossRef] [PubMed]

22.

M. R. Lamont, C.M de Sterke, and B.J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9458. [CrossRef] [PubMed]

23.

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414. [CrossRef] [PubMed]

24.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010). [CrossRef]

25.

M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-loss and low-dispersion-slope highly nonlinear fibers,” J. Lightwave Technol. 23(11), 3615–3624 (2005). [CrossRef]

26.

Y. K. Lizé, X. Wu, M. Nazarathy, Y. Atzmon, L. Christen, S. Nuccio, M. Faucher, N. Godbout, and A. E. Willner, “Chromatic dispersion tolerance in optimized NRZ-, RZ- and CSRZ-DPSK demodulation,” Opt. Express 16(6), 4228–4236 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4228. [CrossRef] [PubMed]

27.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]

28.

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18866. [CrossRef] [PubMed]

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(070.5040) Fourier optics and signal processing : Phase conjugation
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Chalcogenide Glass

History
Original Manuscript: November 12, 2010
Manuscript Accepted: November 22, 2010
Published: December 6, 2010

Virtual Issues
Chalcogenide Glass (2010) Optics Express

Citation
M.D. Pelusi, F. Luan, D.-Y. Choi, S.J. Madden, D.A.P. Bulla, B. Luther-Davies, and B.J. Eggleton, "Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber," Opt. Express 18, 26686-26694 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26686


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17252 . [CrossRef] [PubMed]
  2. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003). [CrossRef]
  3. M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999). [CrossRef]
  4. I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000). [CrossRef]
  5. H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:. [CrossRef]
  6. X. Wu, W.-R. Peng, V. Arbab, J. Wang, and A. Willner, “Tunable optical wavelength conversion of OFDM signal using a periodically-poled lithium niobate waveguide,” Opt. Express 17(11), 9177–9182 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-9177 . [CrossRef] [PubMed]
  7. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007). [CrossRef]
  8. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009). [CrossRef]
  9. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16735 . [CrossRef] [PubMed]
  10. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514 . [CrossRef] [PubMed]
  11. M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010). [CrossRef]
  12. S. Watanabe, “Optical signal processing using nonlinear fibers,” J. Opt. Fiber. Commun. Rep. 3(1), 1–24 (2005). [CrossRef]
  13. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006). [CrossRef]
  14. H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010). [CrossRef] [PubMed]
  15. P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18119 . [CrossRef] [PubMed]
  16. J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s conventional and carrier-suppressed RZ signals transmission over 200 km standard fiber by using mid-span optical phase conjugation (invited, OECC Awarded),” IEICE Trans. on Comm , E 86-B, 1555–1561 (2003).
  17. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007). [CrossRef] [PubMed]
  18. Z. Pan, C. Yub, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010). [CrossRef]
  19. G. Wellbrock and T. J. Xia, “The road to 100g deployment [Commentary],” IEEE Commun. Mag. 48(3), S14–S18 (2010). [CrossRef]
  20. S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008). [CrossRef]
  21. J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-439 . [CrossRef] [PubMed]
  22. M. R. Lamont, C.M de Sterke, and B.J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9458 . [CrossRef] [PubMed]
  23. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 . [CrossRef] [PubMed]
  24. D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010). [CrossRef]
  25. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-loss and low-dispersion-slope highly nonlinear fibers,” J. Lightwave Technol. 23(11), 3615–3624 (2005). [CrossRef]
  26. Y. K. Lizé, X. Wu, M. Nazarathy, Y. Atzmon, L. Christen, S. Nuccio, M. Faucher, N. Godbout, and A. E. Willner, “Chromatic dispersion tolerance in optimized NRZ-, RZ- and CSRZ-DPSK demodulation,” Opt. Express 16(6), 4228–4236 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4228 . [CrossRef] [PubMed]
  27. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  28. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18866 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited