OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 3045–3058
« Show journal navigation

Demonstration of a hitless bypass switch using nanomechanical perturbation for high-bitrate transparent networks

Rohit Chatterjee, Mingbin Yu, Aaron Stein, Dim-Lee Kwong, Lionel C. Kimerling, and Chee Wei Wong  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 3045-3058 (2010)
http://dx.doi.org/10.1364/OE.18.003045


View Full Text Article

Acrobat PDF (2259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an optical hitless bypass switch based on nanomechanical proximity perturbation for high-bitrate transparent networks. Embedded in a single-level π-imbalanced Mach-Zehnder interferometer, the two nanomechanical-based Δβ-directional couplers permit broadband signal rerouting on-chip, while the selected wavelength remains unaffected at all times for optical filter reconfiguration. The optical hitless switch is implemented in the silicon nanophotonics platform, with experimental measurements matching well with numerical and theoretical modeling.

© 2010 OSA

1. Introduction

Recently a few solutions to this approach of hitless tuning has been suggested [14

14. H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006). [CrossRef]

19

19. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009). [CrossRef]

], along with spatial non-blocking switches [20

20. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]

] and earlier studies [21

21. R. E. Scotti, C. Madsen, C. H. Henry, G. Lenz, Y. P. Li, H. Presby, and A. White, “A hitless reconfigurable add-drop multiplexer for WDM networks utilizing planar waveguides, thermo-optic switches and uv-induced gratings,” in Proc. of Optical Fiber Communication Conference, 142 – 143 (1998).

]. The approach towards solving this important problem described in Ref. 14 to 18 employs a “slow” hitless switching scheme for lossless reconfiguration. Here we demonstrate experimentally, for the first time, this hitless switch scheme using integrated nanomechanical proximity perturbation in a single-level π-imbalanced Mach-Zehnder interferometer.

The operation of the hitless bypass switch is described schematically in Fig. 2
Fig. 2 The hitless bypass switch - a possible solution to WDM reconfiguration. The hitless bypass switch schematically described here attempts to provide a possible solution to the problem described in Fig. 1. Similar to Fig. 1, the flow of signals through a reconfigurable optical add-drop multiplexer (OADM) before, during and after reconfiguration is shown schematically. The different wavelength signals are once again depicted by different colored arrows. Stage 1 depicts the situation before any tuning of the OADM has taken place. The desired wavelength signal λ1 is dropped out and re-routed. Now as described in Fig. 1, if it is desired to drop λ3 instead of λ1, reconfiguration of the OADM takes place. During this finite time, the OADM is tuned through all wavelength channels in between λ1 and λ3. To prevent undesired wavelength signal loss, during the reconfiguration of the OADM, the hitless bypass switch provides a path where all the signals are temporarily transferred, thus completely bypassing it. This is shown in Stage 2. In Stage 3, after reconfiguration of the OADM is complete, the hitless bypass switch allows all wavelength signals to remain in the original channel and the desired wavelength λ3 gets re-routed.
, and a practical implementation of this scheme is illustrated in Fig. 3
Fig. 3 Practical implementation of the hitless bypass switch. Schematic of a practical implementation of the hitless bypass switch using nanomechanical proximity perturbation based Δβ directional coupler switches is shown. Three main functional characteristics needed in this design are depicted: (1) cascading of two perturbed directional couplers in a Mach-Zehnder configuration, (2) large-amplitude perturbation of the directional couplers, and (3) inclusion of a ϕ-phase shift in one of the interferometer arms.
. It consists of two inverse-signed symmetrically actuated 2 × 2 switches arranged in a balanced Mach Zehnder configuration. In this implementation, the 2 × 2 switch is a Δβ switched directional coupler (where Δβ is the propagation constant mismatch between two waveguides) with nanomechanical proximity perturbation [22

22. P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006). [CrossRef] [PubMed]

25

25. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]

] to control the power transfer ratios [26

26. H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976). [CrossRef]

28

28. H. F. Taylor, “Optical switching and modulation in parallel dielectric waveguides,” J. Appl. Phys. 44(7), 3257–3262 (1973). [CrossRef]

] with tuned propagation constant mismatch Δβ. A ϕ-phase shift, relative to the phase response of the reconfigurable filter, is introduced to one arm of the Mach Zehnder, with a π-phase shift desired if no reconfigurable optical device is present. The switch does not need to be fast as it serves as a bypass router for the reconfigurable filter.

2. Hitless bypass switch operation

The operation of the hitless bypass switch is described in Ref. 14

14. H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006). [CrossRef]

, and illustrated here in Fig. 4
Fig. 4 Schematic of signal propagation through the hitless bypass switch. a, for limiting condition of completed detuned state. b, for limiting condition of completely unperturbed state. c, for the 3-dB transition state. Notice in the 3-dB transition state, the power in the top arm is π-phase shifted, leading to destructive interference at the exit of the perturbed directional coupler. This maintains power in a5 throughout the transition.
for convenience. The directional couplers are designed such that in the unperturbed case (Δβ = 0) complete power transfer takes place from one waveguide to the other.

Case I: (Δβ ≠ 0) In the off-state, the Δβ switches are completely detuned (Fig. 4a) and all input wavelengths from the top port (a1 in Fig. 4a) go through the top port a3 of the directional couplers to the wavelength selective device, which in this case is a ring resonator filter. The desired wavelength then gets rerouted while the other wavelength channels remain unaffected and emerge out of a5.

Case II: (Δβ = 0) During reconfiguration of the ring resonator filter, the switches are synchronously turned to the on-state (unperturbed case; Fig. 4b) and all input wavelengths travel from the top input port (a1 in Fig. 4b) to port a4 and are then transferred back to a5. Thus, the switch creates a bypass port for the wavelengths during the tuning of the OADM.

As described in Ref. 14

14. H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006). [CrossRef]

, the coupled mode theory formalism [29

29. H. A. Haus, Waves and Fields in optoelectronics, (Prentice Hall, 1984).

,30

30. A. Yariv, “Coupled-wave theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973). [CrossRef]

] has been employed to illustrate the operation and performance sensitivity of the hitless switch in the weakly coupled regime. The net transfer matrix for the two cascaded directional couplers and the phase shifter, phase-shifted by ± Δθ/2, is described in Ref. 14 as:
T11=rr'ej(ϕ+ϕ'+Δθ/2)tt'ejΔθ/2
(1)
T21=j(t'rej(ϕ+Δθ/2)tr'ej(ϕ'+Δθ/2))
(2)
where r (r’), t (t’) and ϕ (ϕ’) are the reflection, transmission and phase of the first (second) directional coupler. As defined in Ref. 14

14. H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006). [CrossRef]

, the transmitted wave amplitudes b'¯is expressed by b'¯=T¯¯a¯, with T12=T21*, T22=T11*. If we assume that we have identical Δβ switches under synchronous operation, then r = r' and t = t'. To achieve complete transmission, Eqs. (1) and (2) verifies that two conditions need to be true: (1) switch 2 input has to be reversed with respect to switch 1 so that ϕ = -ϕ' and, (2) Δθ = π or a π differential phase shift must be introduced to one of the arms of the directional coupler [14

14. H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006). [CrossRef]

].

3. Performance and sensitivity analysis of the design

Figure 5a
Fig. 5 Closed formed solution using coupled mode theory. a, Power in ports a3 and a4 for different detunings. When δ/κ = 3, all power from a4 gets transferred to a3 and complete detuned case is achieved. Note that for all values of the detuning parameter, the transmission in the hitless port is always 100% irrespective of the states of the directional coupler. (b, c, d), Sensitivity analysis of the two-cascade directional coupler design due to variations in π-phase shift (b), asymmetric perturbation (c) and coupling coefficients (d). Variations are investigated for a design threshold loss of 0.5 dB.
illustrates the results of coupled-mode analysis on the two cascaded perturbed directional couplers in the Mach-Zehnder configuration. The extinction ratio, defined as |a4|2/|a3|2, is illustrated for various (δ/κ)2 ratios, where δ(β1β2)/2 is the propagation constant mismatch (detuning) between the two waveguides (β1 and β2), and |κ| is the coupling strength. With zero detuning, all power is found in a4; as the detuning δ goes up to 3κ, the signal in a4 drops to zero and all the power goes to a3. We note that this transfer does not affect the power levels in a5 and a6 during the bypass switching operation. Unity output power (|a5|2; Port 5) is always observed for all intermediate states (expressed by varying (δ/κ)2 ratios), confirming the hitless nature of the designed switch. The sharp dip in the extinction ratio as δ gets close to 3κalso suggests that the detuning needs only to get close to optimal design values and a sharp dip in transmission of |a4|2 can be observed in experiment. Alternatively, this suggests that even if there are device nanofabrication variations from the optimal design parameters, a sharp dip will still be observable in experiments, since the range of δ is sufficiently large - using Δβ perturbation - to compensate for deviations of κ from design.

Variations on the symmetry of the Δβ perturbation and coupling, and π-imbalanced Mach-Zehnder are investigated through closed-form solutions from coupled-mode theory. Figure 5b shows the power in the hitless port |a5|2 (normalized by input power |a1|2) as the device goes through the transition states, when the π-phase shift departs from ideal. In particular, we observe an excess loss of ~0.1 dB (0.4 dB) for a 10% (20%) variation in the desired π-phase shift. During the bypass switch transition, the maximum excess loss occurs when δ/κ = 3/2. Furthermore, as shown in Fig. 5b, we emphasize that the switch remains hitless with zero excess loss for all phase variations when δ/κ = 3. This is due to zero cross-over when the perturbed directional couplers are completely detuned.

Figure 5c shows hitless port |a5|2as the device goes through the transition states, when the two perturbed directional couplers departs from ideal. In particular, to keep the excess losses below 0.5 dB, variations in the perturbations of the two directional couplers (δa/δb) should be kept between 0.76 and 1.31 of each other. In addition, unlike the variations on the π-phase shift analyzed in Fig. 6a
Fig. 6 Numerical calculation of detuning parameter (δ/κ) for a high index contrast system. a, 3D FDTD method was used to find the coupling length for various separations between the two arms of the directional coupler. Here coupling length refers to the length required for complete coupling of light from one port of the directional coupler to the other. For a particular separation, the length is found and then κ is calculated. The inset gives the geometry and dimensions of the directional coupler used in the simulation. Inset also gives the 3D FDTD calculation showing the transfer of power from one port to the other looking from the top of the directional coupler. b, The detuning parameter (δ/κ) is plotted against the proximity distance. The figure shows that the required detuning parameter value (δ/κ = 3) can easily be achieved using the proximity perturbation method. Inset shows the geometry and dimension of the device that was studied.
, there are residual transmission losses even at δ/κ = 3 due to incomplete field interference when the perturbations are asymmetric. Figure 5d shows the sensitivity of the two-cascade perturbed directional coupler design to asymmetry in two couplers, which may arise from nanofabrication variations in the directional coupler gap separation. To keep the excess losses below 0.5 dB, variations in the coupling coefficients of the two directional couplers (κa /κb) should be kept between 0.78 and 1.20 of each other. Residual transmission losses are also due to incomplete field interference when the couplers are asymmetric.

4. Nanomechanical proximity perturbation based Δβ directional coupler switch

A key component of the hitless bypass switch is the Δβ directional coupler, where the propagation mismatch can be controlled through thermal heating [31

31. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood Jr., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003). [CrossRef]

,32

32. Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett. 10(5), 681–683 (1998). [CrossRef]

], electro-optic tuning [33

33. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]

,34

34. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]

], or suspended movable waveguides [35

35. M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006). [CrossRef] [PubMed]

38

38. T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002). [CrossRef]

]. The first two approaches require relatively high powers, while with an electrostatic approach for the movable waveguides, significantly lower power switching is required. Here we employ electrostatic actuation of a fabricated movable dielectric nanobeam (100 nm in width and 200 nm in height, as shown in the inset of Fig. 6b) for proximity perturbation of the directional coupler.

As shown in Fig. 6a, our particular implementation is for a silicon-based directional coupler, with each (500 nm × 200 nm) waveguide designed to support a single transverse electric (TE) mode. 3D finite-difference time-domain simulations [39

39. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition. Artech House Publishers, 2005.

] were performed to obtain the coupling lengths versus the separation distances (for example, a κ of ~1.85 × 104 m−1 for a gap separation of 280 nm). We then examined numerically the perturbed waveguide propagation constant β’ in the first waveguide, for varying proximity distance d (labeled in the inset of Fig. 6b) of the nanobeam from the directional coupler. δ was obtained from (β’ - β2)/2 where β2 is unperturbed propagation constant of the second waveguide. Figure 6b shows the resulting designed δ/κ values for varying nanobeam proximity distance d. A large set of δ/κ values can be obtained within the controllable range of d. Particularly, we note that the desired detuning δ/κ of 3can now be achieved for complete switching, as required in the hitless switch.

We further confirm the switching with finite-difference time-domain results as shown in Fig. 7
Fig. 7 3D numerical simulations of the influence of the perturbing dielectric on the high index contrast directional coupler system. a, Cross-section view of the directional coupler system showing the E-field distribution for different perturbing distances. As the perturbing distance is increased from panel (1) to panel (3), the mode shifts from the launch arm to the other arm of the directional coupler representing the unperturbed state of operation of the switch. b, Top: FDTD results showing unperturbed cross state. Bottom: FDTD results showing completely detuned state, with the power remaining in the source waveguide at the output plane.
, for perturbed directional coupler with a 85 um coupling length. The top panel of Fig. 7b shows the directional coupler without any perturbation [see also Fig. 7a(3)]; the bottom panel shows the completely detuned state, with power remaining in the source waveguide at the output [see also Fig. 7a(1)]. In the completely detuned state (Fig. 7b bottom panel), we also note the weak spatially-oscillating fields between the two waveguides, which correlates with earlier suggestions from coupled mode theory, with an estimated maximum power transfer of 0.25 at half the original coupling length.

5. Nanofabrication of the hitless bypass switch

Encouraged by the numerical and theoretical simulations, we fabricated the complete hitless bypass switch on silicon-on-insulator wafers with 200 nm silicon device thickness and 3000 nm oxide substrate. The devices are patterned using deep-UV or electron-beam lithography, with reactive ion etching as shown in Fig. 8a
Fig. 8 Fabrication results of the hitless bypass switch. a, Optical microscope image of the hitless bypass switch with the cascaded nanomechanical proximity perturbation based directional coupler Δβ switches and a ring resonator coupled to one of the arms of the Mach Zehnder interferometer. Scale bar: 100 μm. Inset shows the cross-section profile of a waveguide (not same device) with vertical sidewalls and small sidewall roughness. b, Close-up SEM image of the perturbing dielectric and the waveguides. Perturbing distances of ~90 to 100 nm was achieved for some of the devices. c, SEM image of the comb-drive actuators. The perturbing dielectric is connected to the comb-drives through thin beams. d, Optical microscope image of the mask created from photoresist. The clear area is directly exposed to the vapor HF and the oxide underneath that gets taken away releasing the comb-drives and the directional coupler. e, SEM image of a Δβ switch after vapor HF and oxygen plasma to remove the photoresist layer.
to 8e. The two Δβ directional couplers are cascaded in the Mach Zehnder arrangement, with the π-phase shift is implemented with extension of one of the Mach-Zehnder arms by half its guided wavelength. The directional coupler gap is 250 nm. To demonstrate the hitless switch operation, the coupling lengths are chosen to be 40 um. This ensures a complete cross state when unperturbed (with 0.4-dB excess loss) and a mixed cross / bar state (74.6% power in cross state, 16.5% in bar state, with remaining in excess loss) when perturbed with 90 nm proximity distance.

6. Experimental results and discussions

The fabricated devices were tested using a tapered lensed fiber-chip-fiber transmission setup (Fig. 9
Fig. 9 Experimental setup for testing the performance of the hitless bypass switch. a, Schematic of the experimental setup. Inset shows a close up image of the chip under test together with the input and output tapered lensed fibers and two electrical probes. To measure the hitless bypass switch four probes was used. b, Zoomed in top view photograph of the chip without the probes. c, Modified setup to collect the output light using an objective lens instead of the tapered lensed fiber. Inset shows the output IR image seen from the cross-section of the waveguide ends. It shows that the output light from one of the arms of the bypass switch is much stronger than the output from the other arm.
), consisting of a tunable laser (1480 nm to 1580 nm) as the input source with lock-in amplification, polarization controllers and precision xyz-stages for input/output fiber positioning to the waveguides. To actuate the nanomechanical beams and the comb-drives, four external probes were connected to the electrodes (two for each Δβ directional coupler switch) with static DC differential bias applied during the optical measurements.

We first measure directly the switching contrast of the nanomechanical proximity perturbation based Δβ directional coupler switches. The drop port transmission of the ring resonator (coupled to one of the arms of the Mach Zehnder interferometer) was measured, in both the perturbed (0V DC bias) and unperturbed states. To achieve the unperturbed state, a 40V DC bias was applied to the electrodes of the comb-drive actuators to pull the nanomechanical dielectric beam away from the directional couplers. The result of the experiment is presented in Fig. 10c
Fig. 10 Measurement results on the hitless bypass switch. a, Light-path in the switch for the perturbed (top figure) and unperturbed cases (bottom figure). Note that, in both cases, light always emerges out of port B and no light comes out of port C. The perturbed case is chosen such that there is light-path in both arms of the Mach-Zehnder to specifically illustrate the hitless switch operation. b, Top-view infrared image of the hitless bypass switch in both example states. c, Transmission spectrum (linear scale) from the drop port of the ring resonator in the perturbed and unperturbed cases. With the perturbed state (0V bias), light on-resonance with the microring resonator on the top interferometer arm is filtered into the drop port, with the resulting spectral resonances. At 40V, the unperturbed condition is achieved and almost all light goes through the bottom portion of the switch and negligible amount of light gets dropped through the ring resonator. 31 dB of contrast is achieved between the perturbed and unperturbed states. d, Transmission measurements through port B and C of the hitless bypass switch for the perturbed and unperturbed cases. An averaged extinction ratio of 17.3-dB and 11.8-dB is achieved for the unperturbed and perturbed cases respectively, across the wavelength range demonstrated.
. Almost 31 dB of switching contrast was achieved at the resonance peak wavelength of 1540 nm. The variation in the peak transmission is suspected to be due to wavelength-dependences of the coupler. The high extinction ratio is achieved because of the small proximity perturbation distance (~90 nm) obtained for the nanofabricated devices. Figure 10b shows the topview infrared images of the chip collected in the far-field, corresponding directly with the input and output port positions of Fig. 10a.

To verify the hitless performance of the bypass switch, the transmission through port B and port C (illustrate in Fig. 10a) was measured for the two example unperturbed (40V) and perturbed (0V) cases. The result is shown in Fig. 10d. From the results, it is clear that the measured transmission through port C always has suppressed transmission for our perturbed and unperturbed states, for the full range of wavelengths examined with our tunable laser source. Note that the perturbed case has light intensity in both arms of the π-imbalanced Mach-Zehnder (74.6% power in cross state and 16.5% in bar state). With the π-phase shift, the fields destructively interference in the second directional coupler, with output transmission in port C suppressed. Moreover, the transmission through port B is always high for the non-resonant wavelengths irrespective of the state of the individual Δβ switches, demonstrating the functional performance of the bypass switch. We also note that in port B there are local resonances (dips in the dash-dot green plot) during the perturbed (0V) state, which arises from the finite reflections at the interfaces of the Δβ switches and can be reduced through adiabatic tapering at the interfaces. We emphasize that the average extinction ratio (between port B and C) preserves an approximately 17.3-dB and 11.8-dB intensity contrast for the unperturbed and perturbed states, across the wavelength range demonstrated for the hitless switch.

7. Conclusion

We present the first implementation of a nanoelectromechanical single-level hitless bypass switch, in a silicon photonics platform. The proximity perturbation method was introduced to demonstrate the cross-to-bar state switching in each of the two cascaded Δβ switches in the Mach-Zehnder interferometer. With an included microring filter, an almost 31 dB of extinction ratio with negligible undesired wavelength rerouting was demonstrated. This allows an optical hitless switch for future high density integrated circuits. Future studies include high bitrate measurements to demonstrate the implementation of this hitless switch in on-chip nanophotonic networks for optical signal processing.

Acknowledgement

This work is dedicated to Professor Herman Haus, who originated the configuration of this hitless switch. We acknowledge stimulating discussions with M. Popovic, M. Watts, X. Yang, S. Kocaman, M. Aras, A. Biberman, K. Bergman, and M. Beals; generous use of the vapor HF system with J. Hone and M. Klima; use of probes from K. Shepard; and partial funding from the DARPA MTO Electronics and Photonics Integrated Circuits program.

References and links

1.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007). [CrossRef]

2.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]

3.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008). [CrossRef]

4.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood Jr, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008). [CrossRef]

5.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006). [CrossRef]

6.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips”, Proc. IEEE Special Issue on Silicon Photonics 97, 1166 – 1185 (2009).

7.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]

8.

C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, John Wiley and Sons, Inc., New York, NY, USA, 1999.

9.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998). [CrossRef]

10.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z – 68720Z–12 (2008).

11.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008). [CrossRef]

12.

C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004). [CrossRef]

13.

V. Craciun and O. W. W. Yang, “Ring resonator-based sparse reconfigurable optical add-drop multiplexer. part II: Node level analysis,” Proc. SPIE 5247, 561–568 (2003). [CrossRef]

14.

H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006). [CrossRef]

15.

M. A. Popović, H. A. Haus, and M. R. Watts, “General approach to hitless switching and FSR extension for resonators in integrated photonic circuits,” in Proc. of Optical Fiber Communication Conference, paper OWI66 (2006).

16.

M. A. Popović, E. P. Ippen, and F. X. Kärtner, “Universally balanced photonic interferometers,” Opt. Lett. 31(18), 2713–2715 (2006). [CrossRef] [PubMed]

17.

M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” in Proc. of Conference on Lasers and Electro-Optics, postdeadline paper CPDA2 (2007).

18.

M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, M. R. Watts, H. I. Smith, F. X. Kärtner, and E. P. Ippen, “Hitless reconfigurable and bandwidth-scalable silicon photonic circuits for telecom and interconnect applications,” in Proc. of Optical Fiber Communication Conference, paper OTuF4 (2008).

19.

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009). [CrossRef]

20.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]

21.

R. E. Scotti, C. Madsen, C. H. Henry, G. Lenz, Y. P. Li, H. Presby, and A. White, “A hitless reconfigurable add-drop multiplexer for WDM networks utilizing planar waveguides, thermo-optic switches and uv-induced gratings,” in Proc. of Optical Fiber Communication Conference, 142 – 143 (1998).

22.

P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006). [CrossRef] [PubMed]

23.

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]

24.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]

25.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]

26.

H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976). [CrossRef]

27.

M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975). [CrossRef]

28.

H. F. Taylor, “Optical switching and modulation in parallel dielectric waveguides,” J. Appl. Phys. 44(7), 3257–3262 (1973). [CrossRef]

29.

H. A. Haus, Waves and Fields in optoelectronics, (Prentice Hall, 1984).

30.

A. Yariv, “Coupled-wave theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973). [CrossRef]

31.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood Jr., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003). [CrossRef]

32.

Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett. 10(5), 681–683 (1998). [CrossRef]

33.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]

34.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]

35.

M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006). [CrossRef] [PubMed]

36.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005). [CrossRef]

37.

E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(1), 155–162 (2002). [CrossRef]

38.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002). [CrossRef]

39.

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition. Artech House Publishers, 2005.

40.

Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997). [CrossRef]

41.

M. Offenberg, B. Elsner, and F. Lärmer, “Vapor HF etching for sacrificial oxide removal in surface micromachining,” Electrochemical Society Fall Meet 94, 1056–1057 (1994).

42.

C. R. Helms and B. E. Deal, “Mechanisms of the HF/H2O vapor phase etching of SiO2,” J. Vac. Sci. Technol. 10(4), 806–811 (1992). [CrossRef]

43.

P. J. Holmes and J. E. Snell, “Vapour etching technique for photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966). [CrossRef]

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: December 2, 2009
Revised Manuscript: January 14, 2010
Manuscript Accepted: January 14, 2010
Published: January 28, 2010

Citation
Rohit Chatterjee, Mingbin Yu, Aaron Stein, Dim-Lee Kwong, Lionel C. Kimerling, and Chee Wei Wong, "Demonstration of a hitless bypass switch using nanomechanical perturbation for high-bitrate transparent networks," Opt. Express 18, 3045-3058 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3045


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007). [CrossRef]
  2. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  3. B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008). [CrossRef]
  4. B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008). [CrossRef]
  5. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006). [CrossRef]
  6. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips”, Proc. IEEE Special Issue on Silicon Photonics 97, 1166 – 1185 (2009).
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  8. C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, John Wiley and Sons, Inc., New York, NY, USA, 1999.
  9. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998). [CrossRef]
  10. T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z – 68720Z–12 (2008).
  11. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008). [CrossRef]
  12. C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004). [CrossRef]
  13. V. Craciun and O. W. W. Yang, “Ring resonator-based sparse reconfigurable optical add-drop multiplexer. part II: Node level analysis,” Proc. SPIE 5247, 561–568 (2003). [CrossRef]
  14. H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006). [CrossRef]
  15. M. A. Popović, H. A. Haus, and M. R. Watts, “General approach to hitless switching and FSR extension for resonators in integrated photonic circuits,” in Proc. of Optical Fiber Communication Conference, paper OWI66 (2006).
  16. M. A. Popović, E. P. Ippen, and F. X. Kärtner, “Universally balanced photonic interferometers,” Opt. Lett. 31(18), 2713–2715 (2006). [CrossRef] [PubMed]
  17. M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” in Proc. of Conference on Lasers and Electro-Optics, postdeadline paper CPDA2 (2007).
  18. M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, M. R. Watts, H. I. Smith, F. X. Kärtner, and E. P. Ippen, “Hitless reconfigurable and bandwidth-scalable silicon photonic circuits for telecom and interconnect applications,” in Proc. of Optical Fiber Communication Conference, paper OTuF4 (2008).
  19. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009). [CrossRef]
  20. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  21. R. E. Scotti, C. Madsen, C. H. Henry, G. Lenz, Y. P. Li, H. Presby, and A. White, “A hitless reconfigurable add-drop multiplexer for WDM networks utilizing planar waveguides, thermo-optic switches and uv-induced gratings,” in Proc. of Optical Fiber Communication Conference, 142 – 143 (1998).
  22. P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006). [CrossRef] [PubMed]
  23. M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]
  24. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]
  25. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  26. H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976). [CrossRef]
  27. M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975). [CrossRef]
  28. H. F. Taylor, “Optical switching and modulation in parallel dielectric waveguides,” J. Appl. Phys. 44(7), 3257–3262 (1973). [CrossRef]
  29. H. A. Haus, Waves and Fields in Optoelectronics, (Prentice Hall, 1984).
  30. A. Yariv, “Coupled-wave theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973). [CrossRef]
  31. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003). [CrossRef]
  32. Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett. 10(5), 681–683 (1998). [CrossRef]
  33. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]
  34. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  35. M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006). [CrossRef] [PubMed]
  36. M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005). [CrossRef]
  37. E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(1), 155–162 (2002). [CrossRef]
  38. T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002). [CrossRef]
  39. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition. Artech House Publishers, 2005.
  40. Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997). [CrossRef]
  41. M. Offenberg, B. Elsner, and F. Lärmer, “Vapor HF etching for sacrificial oxide removal in surface micromachining,” Electrochemical Society Fall Meet 94, 1056–1057 (1994).
  42. C. R. Helms and B. E. Deal, “Mechanisms of the HF/H2O vapor phase etching of SiO2,” J. Vac. Sci. Technol. 10(4), 806–811 (1992). [CrossRef]
  43. P. J. Holmes and J. E. Snell, “Vapour etching technique for photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited