OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4240–4245
« Show journal navigation

Centralized light-source optical access network based on polarization multiplexing

Fulvio Grassi, José Mora, Beatriz Ortega, and José Capmany  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4240-4245 (2010)
http://dx.doi.org/10.1364/OE.18.004240


View Full Text Article

Acrobat PDF (143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents and demonstrates a centralized light source optical access network based on optical polarization multiplexing technique. By using two optical sources emitting light orthogonally polarized in the Central Node for downstream and upstream operations, the Remote Node is kept source-free. EVM values below telecommunication standard requirements have been measured experimentally when bidirectional digital signals have been transmitted over 10 km of SMF employing subcarrier multiplexing technique in the electrical domain.

© 2010 OSA

1. Introduction

2. Description of the POLMUX-based bidirectional access network

2.1 Principle of operation

2.2. Experimental setup for bidirectional transmission system based on PolMUX

3. Experimental measurements

In order to validate the PolMUX approach to centralize light sources in the CN, we have implemented experimentally the scheme proposed in Fig. 1. An electrical vector signal generator provides the downstream and upstream signals both based on a 5 Mb/s QPSK modulated signal at 10 GHz subcarrier frequency. Both data sequences are generated at the CN an RN respectively and propagated over 10 km of SMF.

3.1 Two different wavelengths per orthogonally polarized channel

3.2 Channels degradation as a function of the wavelength separation ∆λ

4. Conclusions

Acknowledgements

References and links.

1.

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-Generation Optical Access Networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007). [CrossRef]

2.

B. Ortega, J. Mora, G. Puerto, and J. Capmany, “Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network,” Opt. Express 15(25), 16781–16786 (2007). [CrossRef] [PubMed]

3.

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24(7), 2827–2834 (2006). [CrossRef]

4.

N. J. Frigo, P. P. Iannone, M. M. Downs, and B. N. Desai, “Mixed-format signal delivery and full-duplex operation in a WDM PON with a single shared source,” in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper TuK5.

5.

N. Deng, C. K. Chan, L. K. Chen, and F. Tong, “Data remodulation on downstream OFSK signal for upstream transmission in WDM passive optical network,” Electron. Lett. 39(24), 1741–1743 (2003). [CrossRef]

6.

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett. 15(10), 1476–1478 (2003). [CrossRef]

7.

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modultaor for WDM access networks,” Electron. Lett. 38(1), 43–45 (2002). [CrossRef]

8.

W. Hung, N. Deng, C. Chan, and L. Chen, “A Novel wavelength Shift Keying Transmitter Based on Optical Phase modulation,” IEEE Photon. Technol. Lett. 16(7), 1739–1741 (2004). [CrossRef]

9.

M. Attygalle, N. Nadarajah, and A. Nirmalathas, “Wavelength reused upstream transmission scheme for WDM passive optical networks,” Electron. Lett. 41(18), 1025–1027 (2005). [CrossRef]

10.

H. Takesue, N. Yoshimoto, Y. Shibata, T. Ito, Y. Tohmori, and T. Sugie, “Wavelength Channel Data Rewriter Using Semiconductor Optical Saturator/Modulator,” J. Lightwave Technol. 24(6), 2347–2354 (2006). [CrossRef]

11.

E. Rochat, S. D. Walker, and M. C. Parker, “Polarisation and wavelength division multiplexing at 1.55 mum for bandwidth enhancement of multimode fibre based access networks,” Opt. Express 12(10), 2280–2292 (2004). [CrossRef] [PubMed]

12.

D. van den Borne, S. L. Jansen, E. Gottwald, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “1.6-b/s/Hz Spectrally Efficient Transmission Over 1700 km of SSMF Using 40 × 85.6-Gb/s POLMUX-RZ-DQPSK,” J. Lightwave Technol. 25(1), 222–232 (2007). [CrossRef]

13.

P. Boffi, M. Ferrario, L. Marazzi, P. Martelli, P. Parolari, A. Righetti, R. Siano, and M. Martinelli, “Measurement of PMD tolerance in 40-Gb/s polarization-multiplexed RZ-DQPSK,” Opt. Express 16(17), 13398–13404 (2008). [CrossRef] [PubMed]

14.

X. S. Yao, L.-S. Yan, B. Zhang, A. E. Willner, and J. Jiang, “All-optic scheme for automatic polarization division demultiplexing,” Opt. Express 15(12), 7407–7414 (2007). [CrossRef] [PubMed]

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 25, 2009
Revised Manuscript: January 15, 2010
Manuscript Accepted: January 16, 2010
Published: February 17, 2010

Citation
Fulvio Grassi, José Mora, Beatriz Ortega, and José Capmany, "Centralized light-source optical access network based on polarization multiplexing," Opt. Express 18, 4240-4245 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4240


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-Generation Optical Access Networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007). [CrossRef]
  2. B. Ortega, J. Mora, G. Puerto, and J. Capmany, “Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network,” Opt. Express 15(25), 16781–16786 (2007). [CrossRef] [PubMed]
  3. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24(7), 2827–2834 (2006). [CrossRef]
  4. N. J. Frigo, P. P. Iannone, M. M. Downs, and B. N. Desai, “Mixed-format signal delivery and full-duplex operation in a WDM PON with a single shared source,” in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper TuK5.
  5. N. Deng, C. K. Chan, L. K. Chen, and F. Tong, “Data remodulation on downstream OFSK signal for upstream transmission in WDM passive optical network,” Electron. Lett. 39(24), 1741–1743 (2003). [CrossRef]
  6. W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett. 15(10), 1476–1478 (2003). [CrossRef]
  7. L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modultaor for WDM access networks,” Electron. Lett. 38(1), 43–45 (2002). [CrossRef]
  8. W. Hung, N. Deng, C. Chan, and L. Chen, “A Novel wavelength Shift Keying Transmitter Based on Optical Phase modulation,” IEEE Photon. Technol. Lett. 16(7), 1739–1741 (2004). [CrossRef]
  9. M. Attygalle, N. Nadarajah, and A. Nirmalathas, “Wavelength reused upstream transmission scheme for WDM passive optical networks,” Electron. Lett. 41(18), 1025–1027 (2005). [CrossRef]
  10. H. Takesue, N. Yoshimoto, Y. Shibata, T. Ito, Y. Tohmori, and T. Sugie, “Wavelength Channel Data Rewriter Using Semiconductor Optical Saturator/Modulator,” J. Lightwave Technol. 24(6), 2347–2354 (2006). [CrossRef]
  11. E. Rochat, S. D. Walker, and M. C. Parker, “Polarisation and wavelength division multiplexing at 1.55 mum for bandwidth enhancement of multimode fibre based access networks,” Opt. Express 12(10), 2280–2292 (2004). [CrossRef] [PubMed]
  12. D. van den Borne, S. L. Jansen, E. Gottwald, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “1.6-b/s/Hz Spectrally Efficient Transmission Over 1700 km of SSMF Using 40 × 85.6-Gb/s POLMUX-RZ-DQPSK,” J. Lightwave Technol. 25(1), 222–232 (2007). [CrossRef]
  13. P. Boffi, M. Ferrario, L. Marazzi, P. Martelli, P. Parolari, A. Righetti, R. Siano, and M. Martinelli, “Measurement of PMD tolerance in 40-Gb/s polarization-multiplexed RZ-DQPSK,” Opt. Express 16(17), 13398–13404 (2008). [CrossRef] [PubMed]
  14. X. S. Yao, L.-S. Yan, B. Zhang, A. E. Willner, and J. Jiang, “All-optic scheme for automatic polarization division demultiplexing,” Opt. Express 15(12), 7407–7414 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited