OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4390–4395
« Show journal navigation

Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramics

M. Tokurakawa, H. Kurokawa, Ae. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4390-4395 (2010)
http://dx.doi.org/10.1364/OE.18.004390


View Full Text Article

Acrobat PDF (206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present cw and mode-locked laser operations on the base of partially disordered crystalline Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramics. In continuous-wave laser operations, the average power of 2.9 W at the wavelength of 1051 nm and 2.8 W at the wavelength of 1031 nm with above 40% optical-to-optical efficiencies were achieved. In mode-locked laser operation, pulses as short as 69 fs with the average power of 820 mW was also obtained.

© 2010 OSA

1. Introduction

In this letter we present cw and mode-locked laser operations based on the Yb3+:{YGd2}[Sc2](Al2Ga)O12 partially disordered crystalline ceramic.

2. Spectroscopy

The absorption and luminescence spectra of Yb3+:({YGd2}[Sc2](Al2Ga)O12 ceramics were measured by an ANDO AQ-6315A optical spectrum analyzer with a 0.5 nm spectral resolution. As can be seen in Fig. 1(a)
Fig. 1 (a) Absorption spectrum (2F7/22F5/2 inter manifold transition) of Yb3+:{YGd2}[Sc2](Al2Ga)O12 (CYb=10 at.%, 2.2 mm thick plate) and (b) luminescence (2F5/22F7/2) spectrum of Yb3{YGd2}[Sc2](Al2Ga)O12 (CYb=1.9at.%, powder) are shown
, the absorption spectrum (CYb = 10 at.%, 2.2 mm thick ness) has a sharp zero phonon line at the wavelength of 970 nm and a broad line around 940 nm, which is suitable for a laser diode (LD) pumping. The measured luminescence spectrum is shown in Fig. 1(b). The emission peak occurs at the wavelength of 1030 nm with the FWHM of about 16 nm (CYb = 1.9 at.%, powder), which is nearly twice broader than that of Yb:YAG. We have also measured the lifetime of the powdered Yb3+:{YGd2}[Sc2](Al2Ga)O12 (CYb = 1.9 at.%) with a 30 µs pulsed pump source. The measured lifetime of the 2F5/2 state is about 1.05 ms.

3. Laser experiment

The developed experimental setup is shown in Fig. 2
Fig. 2 Schematic diagram of the experimental setup of Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic laser. The solid and dashed lines indicate mode-locked and cw operation, respectively. The inset shows the pulse train in the mode-locked operation.
. As the gain medium, an Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic (CYb = 10 at.%, 2.2 mm thick) was used. It was put in a copper holder and arranged at the Brewster angle. The pump sources were broad-stripe LD’s (emission area of 1 × 90 µm2, 9 W, 972 nm wavelength, Δλ ≈ 4 nm for a cw operation and emission area of 1 × 95 µm2, 12 W, 975 nm wavelength, Δλ ≈ 5 nm for a mode-locked operation). The pump beam was focused into the ceramic to 1/e 2 diameter of about 25 × 110 µm2 by four beam-shaping lenses. The folding mirrors (M1, M2, Layertec GmbH) have 100-mm radii of curvature (ROC) on both surfaces to eliminate a concave lens effect and are antireflection coated for the wavelength below 980 nm and high-reflection (99.9%) coated above 1020 nm wavelength. In the cw operation (dashed line in the Fig. 3
Fig. 3 Output power versus incident pump power in the Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic lasers. Continuous-wave operation at 1051 nm wavelength (circle points) and at 1031 nm (square points) as well as mode-locked operation (triangle points: before mode locking, inverse triangle points: after mode locking (86 fs)) are shown.
), the calculated fundamental laser mode diameters inside the gain medium were about 48 × 48 µm2 (at the focusing point).

In case of the cw laser operation output couplers of 5% and 10% transmittances (OC 1) were used. With the 10% OC, an average power of 2.8 W at the wavelength of 1031 nm with a 42% optical-to-optical efficiency was obtained. With the 5% OC, an average power of 2.9 W at the wavelength of 1051 nm with a 44% efficiency was also obtained (Fig. 3). In both cases, the measured laser transverse profiles were multi-moded, which was caused by the large difference between the pump laser profile and cavity’s fundamental laser mode profile.

Due to the existence of the reabsorption loss around 1030 nm, the peak position of the total gain of the Yb3+:{YGd2}[Sc2](Al2Ga)O12 depends on the population inversion ratio of Yb3+ ions and therefore the dependence of the lasing wavelength on the output coupling efficiency was caused. The center wavelength of the pump source depends on its operating current (temperature) so that the absorption efficiency also changed with the incident pump power and therefore the output powers in Fig. 3 showed nonlinear slopes against the incident pump power. To achieve the mode-locked operation, a semiconductor saturable absorber mirror (SESAM, 0.5% saturable absorption depth with 500-fs recovery time, BATOP GmbH) and an SF10 prism pair with the tip-to-tip separation of 50 cm were inserted in the cavity. The laser beam was focused onto the SESAM by a concave mirror (M3, ROC = 400 mm). A 5% transmittance output coupler (OC 2) with a wedge of about 30 minutes was also used. Due to the insertion loss of the SESAM and prism pair, the lasing occurred at the wavelength of 1032 nm before the mode-locked operation started. To achieve short pulse duration, the cavity was carefully aligned. Pulses as short as 69 fs with the average power of 820 mW were obtained. The center wavelength and spectral bandwidth were 1042 nm and 22 nm (Fig. 4
Fig. 4 (a) Autocorrelation trace with sech2 fitting and (b) spectrum of 69 fs pulses at the 820 mW average power.
). The time bandwidth product was 0.42 and the repetition rate was 99 MHz. We have observed the large jumping of the output power from ~530 mW to ~820mW and large change of the laser mode diameters (Fig. 5
Fig. 5 Mode profiles of the laser beam outputs. (a) Before mode locking with the laser mode diameters of about 3100 × 2150 µm2 (tangential × sagittal) and (b) after the mode locking with the laser mode diameters of about 1900 × 1700 µm2.
) as the mode locked operation starts. The pulse duration could be tuned by modifying the alignment (insertion depth of the prisms, angle and distance between the folding mirrors (M1, M2), position of the gain medium and position of the focusing point of the pump beam), and the position of center wavelength shifted to longer wavelength side with the pulse shortening (Fig. 6
Fig. 6 Spectra of mode-locked lasing pulses with several pulse durations. The center wavelength shifted with pulse shortening (spectral broadening).
).

4. Discussion and conclusion

In conclusion, we have achieved cw and mode-locked laser operations based on Yb3+:{YGd2}[Sc2](Al2Ga)O12 partially disordered ceramic. In cw laser operations, the average power of 2.9 W at the wavelength of 1051 nm and 2.8 W at the wavelength of 1031 nm with above 40% optical-to-optical efficiencies were obtained. . In the mode-locked laser operation, pulses as short as 69 fs with the average power of 820 mW was also obtained. We believe Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic can be used in much higher average power femtosecond laser operations.

Acknowledgement

This research was partly supported by Grant-in-Aid for Scientific Research and the Photon Frontier Network Program of Ministry of Education, Culture, Sports, Science and Technology

References and links

1.

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000). [CrossRef]

2.

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007). [CrossRef]

3.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE JSTQE 13, 598–609 (2007).

4.

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004). [CrossRef] [PubMed]

5.

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-Amplifier,” Opt. Express 17(15), 12230–12245 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12230. [CrossRef] [PubMed]

6.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004). [CrossRef]

7.

H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001). [CrossRef]

8.

F. Druon, D. N. Papadopoulos, J. Boudeile, M. Hanna, P. Georges, A. Benayad, P. Camy, J. L. Doualan, V. Ménard, and R. Moncorgé, “Mode-locked operation of a diode-pumped femtosecond Yb:SrF2 laser,” Opt. Lett. 34(15), 2354–2356 (2009). [CrossRef] [PubMed]

9.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

10.

S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15539. [CrossRef] [PubMed]

11.

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006). [CrossRef] [PubMed]

12.

J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007). [CrossRef] [PubMed]

13.

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004). [CrossRef] [PubMed]

14.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006). [CrossRef]

15.

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005). [CrossRef]

16.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008). [CrossRef]

17.

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, S. V. Kouznetsov, A. N. Nakladov, V. V. Osiko, H. Jelinkova, and J. Šulc, “Spectroscopic and Oscillation Properties of Yb3+Ions in BaF2-SrF2-CaF2Crystals and Ceramics,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB25.

18.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353. [CrossRef] [PubMed]

19.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007). [CrossRef] [PubMed]

20.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008). [CrossRef] [PubMed]

21.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009). [CrossRef]

22.

E. Sorokin, M. H. Ober, I. Sorokina, E. Wintner, A. J. Schmidt, A. I. Zagumennyi, G. B. Loutts, E. W. Zharikov, and I. A. Shcherbakov, “Femtosecond solid-state lasers using Nd3+-doped mixed scandium garnets,” J. Opt. Soc. Am. B 10(8), 1436–1442 (1993). [CrossRef]

23.

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004). [CrossRef]

24.

M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, “Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror,” J. Opt. Soc. Am. B 16(6), 895–904 (1999). [CrossRef]

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 6, 2010
Revised Manuscript: February 5, 2010
Manuscript Accepted: February 6, 2010
Published: February 17, 2010

Citation
M. Tokurakawa, H. Kurokawa, Ae. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramics," Opt. Express 18, 4390-4395 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4390


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000). [CrossRef]
  2. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007). [CrossRef]
  3. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
  4. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004). [CrossRef] [PubMed]
  5. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-Amplifier,” Opt. Express 17(15), 12230–12245 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12230 . [CrossRef] [PubMed]
  6. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004). [CrossRef]
  7. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001). [CrossRef]
  8. F. Druon, D. N. Papadopoulos, J. Boudeile, M. Hanna, P. Georges, A. Benayad, P. Camy, J. L. Doualan, V. Ménard, and R. Moncorgé, “Mode-locked operation of a diode-pumped femtosecond Yb:SrF2 laser,” Opt. Lett. 34(15), 2354–2356 (2009). [CrossRef] [PubMed]
  9. A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).
  10. S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15539 . [CrossRef] [PubMed]
  11. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006). [CrossRef] [PubMed]
  12. J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007). [CrossRef] [PubMed]
  13. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004). [CrossRef] [PubMed]
  14. C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006). [CrossRef]
  15. A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005). [CrossRef]
  16. A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008). [CrossRef]
  17. O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, S. V. Kouznetsov, A. N. Nakladov, V. V. Osiko, H. Jelinkova, and J. Šulc, “Spectroscopic and Oscillation Properties of Yb3+Ions in BaF2-SrF2-CaF2Crystals and Ceramics,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB25.
  18. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 . [CrossRef] [PubMed]
  19. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007). [CrossRef] [PubMed]
  20. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008). [CrossRef] [PubMed]
  21. A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009). [CrossRef]
  22. E. Sorokin, M. H. Ober, I. Sorokina, E. Wintner, A. J. Schmidt, A. I. Zagumennyi, G. B. Loutts, E. W. Zharikov, and I. A. Shcherbakov, “Femtosecond solid-state lasers using Nd3+-doped mixed scandium garnets,” J. Opt. Soc. Am. B 10(8), 1436–1442 (1993). [CrossRef]
  23. K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004). [CrossRef]
  24. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, “Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror,” J. Opt. Soc. Am. B 16(6), 895–904 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited