OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5873–5878
« Show journal navigation

Self-trapping of optical vortices at the surface of an induced semi-infinite photonic lattice

Daohong Song, Cibo Lou, Kody J.H. Law, Liqin Tang, Zhuoyi Ye, P.G. Kevrekidis, Jingjun Xu, and Zhigang Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5873-5878 (2010)
http://dx.doi.org/10.1364/OE.18.005873


View Full Text Article

Acrobat PDF (578 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate self-trapping of singly-charged vortices at the surface of an optically induced two-dimensional photonic lattice. Under appropriate conditions of self-focusing nonlinearity, a singly-charged vortex beam can self-trap into a stable semi-infinite gap surface vortex soliton through a four-site excitation. However, a single-site excitation leads to a quasi-localized state in the first photonic gap, and our theoretical analysis illustrates that such a bandgap surface vortex soliton is always unstable. Our experimental results of stable and unstable topological surface solitons are corroborated by direct numerical simulations and linear stability analysis.

© 2010 OSA

1. Introduction

In recent years, there has been an increased interest in the study of nonlinear discrete surface waves in periodic structures [1

1. S. Suntsov, K. G. Makris, G. A. Siviloglou, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, R. Morandotti, H. Yang, G. Salamo, M. Volatier, V. Aimez, R. Arès, M. Sorel, Y. Min, W. Sohler, X. Wang, A. Bezryadina, and Z. Chen, “Observation of one- and two-dimensional discrete surface spatial solitons,” J. Nonlinear Opt. Phys. Mater. 16(04), 401 (2007). [CrossRef]

,2

2. Yu. S. Kivshar, “Nonlinear Tamm states and surface effects in periodic photonic structures,” Laser Phys. Lett. 5(10), 703–713 (2008). [CrossRef]

]. Discrete surface solitons were first proposed and experimentally demonstrated at the edge of one-dimensional (1(d) photonic lattices [3

3. K. G. Makris, S. Suntsov, D. N. Christodoulides, G. I. Stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30(18), 2466–2468 (2005). [CrossRef] [PubMed]

7

7. G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express 14(12), 5508–5516 (2006). [CrossRef] [PubMed]

], and subsequently they were also suggested and observed in 2D optical settings [8

8. K. G. Makris, J. Hudock, D. N. Christodoulides, G. I. Stegeman, O. Manela, and M. Segev, “Surface lattice solitons,” Opt. Lett. 31(18), 2774–2776 (2006). [CrossRef] [PubMed]

10

10. A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “S. Nolte A. Tunnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98(17), 173903 (2007). [CrossRef]

]. In fact, the phenomena of nonlinear surface states were enriched by prediction and demonstration of a variety of surface or interface solitons in the 2D domain, including multipole mode surface solitons [11

11. Y. V. Kartashov and L. Torner, “Multipole-mode surface solitons,” Opt. Lett. 31(14), 2172–2174 (2006). [CrossRef] [PubMed]

], angular surface solitons [12

12. A. Szameit, Y. V. Kartashov, V. A. Vysloukh, M. Heinrich, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, F. Lederer, and L. Torner, “Angular surface solitons in sectorial hexagonal arrays,” Opt. Lett. 33, 2466 (2005).

], lattice interface solitons [13

13. M. Heinrich, Y. V. Kartashov, L. P. R. Ramirez, A. Szameit, F. Dreisow, R. Keil, S. Nolte, A. Tünnermann, V. A. Vysloukh, and L. Torner, “Two-dimensional solitons at interfaces between binary superlattices and homogeneous lattices,” Phys. Rev. A 80(6), 063832 (2009). [CrossRef]

], and surface soliton arrays [14

14. X. Wang, A. Samodurov, and Z. Chen, “Demonstration of surface soliton arrays at the edge of a two-dimensional photonic lattice,” Opt. Lett. 33(11), 1240–1242 (2008). [CrossRef] [PubMed]

], to name just a few. Despite of these efforts on surface solitons, to our knowledge, no experimental work has investigated self-trapping of optical vortices at the surfaces of optical periodic structures. Thus far, there has been only limited theoretical work on surface vortex solitons: in one case, it was shown that in a discrete model of nonlinear Schrödinger equation surface vortex solitons could not exist exactly at the interface between a periodic medium and a homogeneous medium [15

15. H. Susanto, P. G. Kevrekidis, B. A. Malmed, R. Carretero-Gonzalez, and D. J. Frantzeskakis, “Discrete surface solitons in two dimensions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 046602 (2002).

]. In another case, however, the solutions of lattice vortex solitons were found at the interface between two periodic media with different modulation indices [16

16. Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, “Surface vortex solitons,” Opt. Express 14(9), 4049–4057 (2006). [CrossRef] [PubMed]

]. While discrete vortex solitons propagating inside an otherwise uniform photonic lattice were predicted [17

17. B. A. Malomed and P. G. Kevrekidis, “Discrete vortex solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(2), 026601 (2001). [CrossRef] [PubMed]

20

20. M. S. Petrović, S. Prvanovic, and D. M. Jovic, “Soliton with different topological charges,” Phys. Rev. A 79(2), 021803 (2009). [CrossRef]

] and demonstrated successfully in a number of experiments [21

21. D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004). [CrossRef] [PubMed]

24

24. D. Song, C. Lou, L. Tang, X. Wang, W. Li, X. Chen, K. J. Law, H. Susanto, P. G. Kevrekidis, J. Xu, and Z. Chen, “Self-trapping of optical vortices in waveguide lattices with a self-defocusing nonlinearity,” Opt. Express 16(14), 10110–10116 (2008). [CrossRef] [PubMed]

], it is natural to ask whether vortex solitons be established at the surfaces or interfaces of optical periodic structures.

2. Experimental results

Our experimental setup is similar to that used earlier [9

9. X. Wang, A. Bezryadina, Z. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98(12), 123903 (2007). [CrossRef] [PubMed]

,14

14. X. Wang, A. Samodurov, and Z. Chen, “Demonstration of surface soliton arrays at the edge of a two-dimensional photonic lattice,” Opt. Lett. 33(11), 1240–1242 (2008). [CrossRef] [PubMed]

], except that now the probe beam is a vortex beam. An interface between a 2D optical lattice (~30μm spacing) and a homogenous medium is established by optical induction in a SBN:61 photorefractive crystal. After the Talbot effect of the periodic intensity pattern is suppressed, a sharp interface is generated at the crystal input [Fig. 1(a)
Fig. 1 Optically induced semi-infinite square lattices. Shown are the lattice beam at (a) input, (b) linear output, and (c) nonlinear output. (d) zoom-in interference pattern of an input vortex beam at the surface with an inclined plane wave.
], but it diffracts after 10 mm of linear propagation through the crystal [Fig. 1(b)]. With an appropriate level of nonlinearity, the lattice surface restores and remains nearly invariant through the crystal [Fig. 1(c)]. An extraordinarily-polarized SCV beam [Fig. 1(d)] is created with a computer-generated vortex mask, and is sent to propagate collinearly with the lattice beam along the surface. The size of the input vortex beam can be varied in order to cover either a single site or four sites on or close to the surface.

First, we use the single-site excitation so the vortex ring covers only one lattice site. This excitation scheme is similar to that used for demonstration of second band vortex solitons [23

23. G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of second-band vortex solitons in 2D photonic lattices,” Phys. Rev. Lett. 95(5), 053904 (2005). [CrossRef] [PubMed]

] except that the excitation here is at the surface [Fig. 2(a)
Fig. 2 Experimental (top) and numerical (bottom) results of vortex self-trapping under single-site surface excitation. (a) Lattice beam superimposed with the vortex beam, (b) linear and (c) nonlinear output of the vortex beam, where blue dashed line indicates the surface location, (d) zoom-in interferogram of (c) with an inclined plane wave, and (e) k-space spectrum of (c). The dashed square in (e) marks the boundary of the first Brillouin zone.
]. The vortex beam exhibits asymmetric discrete diffraction when its intensity is low but self-traps at the surface site when its intensity is high while keeping the bias field (2.2kV/cm) unchanged. Typical experimental results are presented in Fig. 2. When the nonlinearity is absent (the vortex-to-lattice beam intensity ratio is less than 1:10), the vortex beam diffracts as shown in Fig. 2(b). The diffraction tails have double intensity peaks at each lattice site [Fig. 2(b)], indicating the excitation of second band Bloch modes. The tail going into the lattice is much longer than that at the lattice surface, owing to surface enhanced reflection [4

4. S. Suntsov, K. G. Makris, D. N. Christodoulides, G. I. Stegeman, A. Hache, R. Morandotti, H. Yang, G. Salamo, and M. Sorel, “Observation of discrete surface solitons,” Phys. Rev. Lett. 96(6), 063901 (2006). [CrossRef] [PubMed]

,9

9. X. Wang, A. Bezryadina, Z. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98(12), 123903 (2007). [CrossRef] [PubMed]

]. (Note that the diffraction could be much stronger if the lattice potential is reduced or the crystal length increased). As we increase the intensity ratio to 1:3, self-trapping of the vortex at the lattice surface occurs when the vortex confines more at the site of initial excitation, maintaining a donut-shaped pattern [Fig. 2(c)]. To verify its phase singularity, a tilted plane wave is introduced to interfere with the surface vortex beam. The single fork remains in the interferogram [Fig. 2(d)], indicating that the phase singularity is preserved during the 1 cm experimental propagation length. Since the input vortex beam is tightly focused, its initial k-space spectrum extends beyond the first Brillouin zone (BZ) [23

23. G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of second-band vortex solitons in 2D photonic lattices,” Phys. Rev. Lett. 95(5), 053904 (2005). [CrossRef] [PubMed]

]. Such input condition excites high band Bloch modes. In the case of the self-focusing nonlinearity, this leads to that the power spectrum is concentrated at the normal diffraction regions outside the first BZ but close to the high-symmetry X-points, as shown in Fig. 2(e). Apparently, such self-trapped vortex states arise from excitation of Bloch modes near the X-points of the second Bloch band. These experimental observations are compared with numerical results obtained from beam propagation simulations using experimental conditions. The numerical model we used is a nonlinear wave equation with a 2D square lattice potential under the self-focusing saturable nonlinearity [8

8. K. G. Makris, J. Hudock, D. N. Christodoulides, G. I. Stegeman, O. Manela, and M. Segev, “Surface lattice solitons,” Opt. Lett. 31(18), 2774–2776 (2006). [CrossRef] [PubMed]

,9

9. X. Wang, A. Bezryadina, Z. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98(12), 123903 (2007). [CrossRef] [PubMed]

], and the simulation results (Fig. 2, bottom) agree well with experimental observations. Although this agreement is obtained within 1 cm of crystal length, our theoretical analysis below shows that these quasi-localized surface states residing in the first photonic bandgap are unstable and thus would break up upon long distance propagation. In addition, what we demonstrated here is nonlinear surface modes, as our numerical simulation shows that the vortex cannot evolve into a single-site linear surface mode when the surface is deformed as in Fig. 1(c).

Next, we use the four-site excitation so the vortex ring is expanded to cover four nearest lattice sites at the surface [the vortex core sits in the index minimum as off-site excitation, as shown in Fig. 3(a)
Fig. 3 Experimental (top) and numerical (bottom) results of vortex self-trapping under four-site surface excitation. The insert in (c) shows the breakup of vortex beam into two spots without the induced lattice. Caption for (a-e) is the same as in Fig. 2.
] Under appropriate nonlinear conditions, the SCV self-traps into a discrete surface vortex soliton. Typical experimental results are presented in Fig. 3. At low nonlinearity, the vortex beam exhibits discrete diffraction [Fig. 3(b)]. Notice that in this case the diffracted intensity pattern does not have fine features of double-peak in each lattice site, different from that of single-site excitation [Fig. 2(b)]. This suggests that, under this lattice condition, the expanded vortex excites the first band Bloch modes. At high nonlinearity, self-trapping of the vortex beam into a four-spot pattern is achieved [Fig. 3(c)]. Due to that the induced surface is slightly deformed [Fig. 1(c), the four-spot does not match a perfect square pattern. For comparison, the vortex nonlinear output in a homogeneous crystal (i.e., without the induced lattice] under the same bias condition is shown in the insert of Fig. 3(c), where the vortex breaks up into two diverging and rotating spots due to azimuthal modulation instability. To monitor the phase structure of the self-trapped vortex, an inclined plane wave was again introduced for interference, and the vortex singularity persists clearly in the nonlinear output [Fig. 3(d)]. The nonlinear spectrum [Fig. 3(e)] is also different from that of single-site excitation shown in Fig. 2(e), since now most of the energy is concentrated in the central region of normal diffraction within the first BZ. This indicates that the surface vortex soliton is formed in the semi-infinite gap with modes primarily from near the Γ-point of the first Bloch band. Our numerical simulation (Fig. 3, bottom) of vortex propagation under the four-site excitation finds good agreement with experimental observation. As shown below, this four-site surface vortex soliton can be stable and thus remains intact for long distances.

3. Numerical results

Experimentally, it is a challenge to monitor the stability of above self-trapped surface vortices due to limited propagation distance along the edge of 2D induced photonic lattices as restricted by the crystal length. To address the stability issue, i.e., whether these self-trapped states can persist for longer propagation distances, we perform numerical simulations to much longer distances than the crystal length along with systematic linear stability analysis. We find that the single-site Bragg-reflection gap surface vortices are always unstable, whereas the four-site semi-infinite gap vortices can be stable within a certain parameter range. Results from beam propagation simulation up to 4 cm are shown in Fig. 4
Fig. 4 Numerical simulation of single- (top) and four-site (bottom) excitation of a SCV after 4-cm of nonlinear propagation. Shown are (a) vortex output intensity pattern and (b) its corresponding interferogram, and (c) side-view of the vortex propagation to z = 4 cm.
. There is an obvious difference in the output for two different excitation schemes. For the four-site excitation, the intensity pattern of the vortex consists of four equal-intensity lobes which remain invariant during propagation. The interferogram obtained by interfering the self-trapped vortex with an inclined plane wave shows clearly that the vortex singularity persists. On the other hand, the single-site vortex is unstable during nonlinear propagation, and the output intensity pattern tends to break up after certain propagation distance beyond the crystal length. We mention that stable second-band vortex solitons have been demonstrated inside uniform lattices [23

23. G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of second-band vortex solitons in 2D photonic lattices,” Phys. Rev. Lett. 95(5), 053904 (2005). [CrossRef] [PubMed]

].

Finally, we study the stability of the self-trapped vortices by means of linear stability analysis using the parameters corresponding to experimental conditions. The nonlinear model equation is [iz+2+β+σ1+|U|2+V]U=0, where U is the beam envelope, β is the propagation constant, σ = −21.6, andV=5cos2[(x+y)/2]cos2[(xy)/2]is the lattice potential wheny+π/2>xbut V = 0 elsewhere. We find the stationary soliton solutions, and then use ansatz u(x,y,z)=U(x,y)+v(x,y)eλz+w(x,y)eλ*zfor stability analysis. In Fig. 5
Fig. 5 Numerical solutions and bifurcation diagrams for four-site (a-c) vortex family in the semi-infinite gap and single-site family (d-f) in the first photonic gap. The four panels (in clockwise order from top left) for each case correspond to intensity pattern, phase structure, linearization spectrum, and Fourier spectrum. The middle panels are plots of power curve P and growth rate max(Re[λ] as a function of propagation constant β. Blue dashed lines correspond to location of the lattice surface.
, we showcase the results of our bifurcation computations for the exact stationary states through illustrating the optical power of the nonlinear waveforms as a function of the propagation constant, along with results of linear stability analysis for the obtained states by means of the maximal real part of the linearization eigenvalues λ (i.e., the instability growth rate). We find that the four-site surface vortex can indeed be stable [Fig. 5(a)] for sufficiently large propagation constant in the semi-infinite gap, while the single-site one in the first band-gap cannot [Figs. 5(d)5(f)]. Additionally, the four-site vortex loses its stability while close to the band-edge [Figs. 5(b), 5(c)], and in some cases it breaks up into unstable quadrupolar structure. The single-site vortex [shown in Figs. 5(d), 5(e)] disappears at the second band-edge, and becomes more unstable when close to the edge of the first band [Fig. 5(f)]. The vortex tails are noticeable with Bloch mode characteristics when the propagation constants of single-site vortex solutions approach to the band edge. From Fig. 5, it should be noted that the four-site vortex, even when weakly unstable, has an instability typically much weaker in growth rate than that of the single-site vortex

4. Conclusion

In summary, we have studied both experimentally and numerically self-trapping of singly-charged vortices at the surface of 2D optically induced photonic lattices with self-focusing nonlinearity. We show that the four-site SCV beam can self-trap into a stable discrete surface vortex soliton within the semi-infinite gap, while the single-site vortex in the photonic bandgap is always unstable in the whole existence region. Our experimental results are corroborated by direct numerical simulations and bifurcation analysis.

Acknowledgments

This work was supported by the 973 program, 111project, NSFC, PCSIRT, NSF and AFOSR. We appreciate assistance from A. Bezryadina and X. Wang.

References and links

1.

S. Suntsov, K. G. Makris, G. A. Siviloglou, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, R. Morandotti, H. Yang, G. Salamo, M. Volatier, V. Aimez, R. Arès, M. Sorel, Y. Min, W. Sohler, X. Wang, A. Bezryadina, and Z. Chen, “Observation of one- and two-dimensional discrete surface spatial solitons,” J. Nonlinear Opt. Phys. Mater. 16(04), 401 (2007). [CrossRef]

2.

Yu. S. Kivshar, “Nonlinear Tamm states and surface effects in periodic photonic structures,” Laser Phys. Lett. 5(10), 703–713 (2008). [CrossRef]

3.

K. G. Makris, S. Suntsov, D. N. Christodoulides, G. I. Stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30(18), 2466–2468 (2005). [CrossRef] [PubMed]

4.

S. Suntsov, K. G. Makris, D. N. Christodoulides, G. I. Stegeman, A. Hache, R. Morandotti, H. Yang, G. Salamo, and M. Sorel, “Observation of discrete surface solitons,” Phys. Rev. Lett. 96(6), 063901 (2006). [CrossRef] [PubMed]

5.

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96(7), 073901 (2006). [CrossRef] [PubMed]

6.

C. R. Rosberg, D. N. Neshev, W. Krolikowski, A. Mitchell, R. A. Vicencio, M. I. Molina, and Y. S. Kivshar, “Observation of surface gap solitons in semi-infinite waveguide arrays,” Phys. Rev. Lett. 97(8), 083901 (2006). [CrossRef] [PubMed]

7.

G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express 14(12), 5508–5516 (2006). [CrossRef] [PubMed]

8.

K. G. Makris, J. Hudock, D. N. Christodoulides, G. I. Stegeman, O. Manela, and M. Segev, “Surface lattice solitons,” Opt. Lett. 31(18), 2774–2776 (2006). [CrossRef] [PubMed]

9.

X. Wang, A. Bezryadina, Z. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98(12), 123903 (2007). [CrossRef] [PubMed]

10.

A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “S. Nolte A. Tunnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98(17), 173903 (2007). [CrossRef]

11.

Y. V. Kartashov and L. Torner, “Multipole-mode surface solitons,” Opt. Lett. 31(14), 2172–2174 (2006). [CrossRef] [PubMed]

12.

A. Szameit, Y. V. Kartashov, V. A. Vysloukh, M. Heinrich, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, F. Lederer, and L. Torner, “Angular surface solitons in sectorial hexagonal arrays,” Opt. Lett. 33, 2466 (2005).

13.

M. Heinrich, Y. V. Kartashov, L. P. R. Ramirez, A. Szameit, F. Dreisow, R. Keil, S. Nolte, A. Tünnermann, V. A. Vysloukh, and L. Torner, “Two-dimensional solitons at interfaces between binary superlattices and homogeneous lattices,” Phys. Rev. A 80(6), 063832 (2009). [CrossRef]

14.

X. Wang, A. Samodurov, and Z. Chen, “Demonstration of surface soliton arrays at the edge of a two-dimensional photonic lattice,” Opt. Lett. 33(11), 1240–1242 (2008). [CrossRef] [PubMed]

15.

H. Susanto, P. G. Kevrekidis, B. A. Malmed, R. Carretero-Gonzalez, and D. J. Frantzeskakis, “Discrete surface solitons in two dimensions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 046602 (2002).

16.

Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, “Surface vortex solitons,” Opt. Express 14(9), 4049–4057 (2006). [CrossRef] [PubMed]

17.

B. A. Malomed and P. G. Kevrekidis, “Discrete vortex solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(2), 026601 (2001). [CrossRef] [PubMed]

18.

J. Yang and Z. H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett. 28(21), 2094–2096 (2003). [CrossRef] [PubMed]

19.

J. Wang and J. Yang, “Families of vortex solitons in periodic media,” Phys. Rev. A 77(3), 033834 (2008). [CrossRef]

20.

M. S. Petrović, S. Prvanovic, and D. M. Jovic, “Soliton with different topological charges,” Phys. Rev. A 79(2), 021803 (2009). [CrossRef]

21.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004). [CrossRef] [PubMed]

22.

J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004). [CrossRef] [PubMed]

23.

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of second-band vortex solitons in 2D photonic lattices,” Phys. Rev. Lett. 95(5), 053904 (2005). [CrossRef] [PubMed]

24.

D. Song, C. Lou, L. Tang, X. Wang, W. Li, X. Chen, K. J. Law, H. Susanto, P. G. Kevrekidis, J. Xu, and Z. Chen, “Self-trapping of optical vortices in waveguide lattices with a self-defocusing nonlinearity,” Opt. Express 16(14), 10110–10116 (2008). [CrossRef] [PubMed]

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 27, 2010
Revised Manuscript: February 24, 2010
Manuscript Accepted: February 24, 2010
Published: March 9, 2010

Citation
Daohong Song, Cibo Lou, Kody J. H. Law, Liqin Tang, Zhuoyi Ye, P.G. Kevrekidis, Jingjun Xu, and Zhigang Chen, "Self-trapping of optical vortices at the surface of an induced semi-infinite photonic lattice," Opt. Express 18, 5873-5878 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5873


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Suntsov, K. G. Makris, G. A. Siviloglou, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, R. Morandotti, H. Yang, G. Salamo, M. Volatier, V. Aimez, R. Arès, M. Sorel, Y. Min, W. Sohler, X. Wang, A. Bezryadina, and Z. Chen, “Observation of one- and two-dimensional discrete surface spatial solitons,” J. Nonlinear Opt. Phys. Mater. 16(04), 401 (2007). [CrossRef]
  2. Yu. S. Kivshar, “Nonlinear Tamm states and surface effects in periodic photonic structures,” Laser Phys. Lett. 5(10), 703–713 (2008). [CrossRef]
  3. K. G. Makris, S. Suntsov, D. N. Christodoulides, G. I. Stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30(18), 2466–2468 (2005). [CrossRef] [PubMed]
  4. S. Suntsov, K. G. Makris, D. N. Christodoulides, G. I. Stegeman, A. Hache, R. Morandotti, H. Yang, G. Salamo, and M. Sorel, “Observation of discrete surface solitons,” Phys. Rev. Lett. 96(6), 063901 (2006). [CrossRef] [PubMed]
  5. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96(7), 073901 (2006). [CrossRef] [PubMed]
  6. C. R. Rosberg, D. N. Neshev, W. Krolikowski, A. Mitchell, R. A. Vicencio, M. I. Molina, and Y. S. Kivshar, “Observation of surface gap solitons in semi-infinite waveguide arrays,” Phys. Rev. Lett. 97(8), 083901 (2006). [CrossRef] [PubMed]
  7. G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Observation of discrete quadratic surface solitons,” Opt. Express 14(12), 5508–5516 (2006). [CrossRef] [PubMed]
  8. K. G. Makris, J. Hudock, D. N. Christodoulides, G. I. Stegeman, O. Manela, and M. Segev, “Surface lattice solitons,” Opt. Lett. 31(18), 2774–2776 (2006). [CrossRef] [PubMed]
  9. X. Wang, A. Bezryadina, Z. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett. 98(12), 123903 (2007). [CrossRef] [PubMed]
  10. A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and L. Torner, “S. Nolte A. Tunnermann, and L. Torner, “Observation of two-dimensional surface solitons in asymmetric waveguide arrays,” Phys. Rev. Lett. 98(17), 173903 (2007). [CrossRef]
  11. Y. V. Kartashov and L. Torner, “Multipole-mode surface solitons,” Opt. Lett. 31(14), 2172–2174 (2006). [CrossRef] [PubMed]
  12. A. Szameit, Y. V. Kartashov, V. A. Vysloukh, M. Heinrich, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, F. Lederer, and L. Torner, “Angular surface solitons in sectorial hexagonal arrays,” Opt. Lett. 33, 2466 (2005).
  13. M. Heinrich, Y. V. Kartashov, L. P. R. Ramirez, A. Szameit, F. Dreisow, R. Keil, S. Nolte, A. Tünnermann, V. A. Vysloukh, and L. Torner, “Two-dimensional solitons at interfaces between binary superlattices and homogeneous lattices,” Phys. Rev. A 80(6), 063832 (2009). [CrossRef]
  14. X. Wang, A. Samodurov, and Z. Chen, “Demonstration of surface soliton arrays at the edge of a two-dimensional photonic lattice,” Opt. Lett. 33(11), 1240–1242 (2008). [CrossRef] [PubMed]
  15. H. Susanto, P. G. Kevrekidis, B. A. Malmed, R. Carretero-Gonzalez, and D. J. Frantzeskakis, “Discrete surface solitons in two dimensions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 046602 (2002).
  16. Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, “Surface vortex solitons,” Opt. Express 14(9), 4049–4057 (2006). [CrossRef] [PubMed]
  17. B. A. Malomed and P. G. Kevrekidis, “Discrete vortex solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(2), 026601 (2001). [CrossRef] [PubMed]
  18. J. Yang and Z. H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett. 28(21), 2094–2096 (2003). [CrossRef] [PubMed]
  19. J. Wang and J. Yang, “Families of vortex solitons in periodic media,” Phys. Rev. A 77(3), 033834 (2008). [CrossRef]
  20. M. S. Petrović, S. Prvanovic, and D. M. Jovic, “Soliton with different topological charges,” Phys. Rev. A 79(2), 021803 (2009). [CrossRef]
  21. D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92(12), 123903 (2004). [CrossRef] [PubMed]
  22. J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92(12), 123904 (2004). [CrossRef] [PubMed]
  23. G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of second-band vortex solitons in 2D photonic lattices,” Phys. Rev. Lett. 95(5), 053904 (2005). [CrossRef] [PubMed]
  24. D. Song, C. Lou, L. Tang, X. Wang, W. Li, X. Chen, K. J. Law, H. Susanto, P. G. Kevrekidis, J. Xu, and Z. Chen, “Self-trapping of optical vortices in waveguide lattices with a self-defocusing nonlinearity,” Opt. Express 16(14), 10110–10116 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited