OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6390–6395
« Show journal navigation

Low divergence Terahertz photonic-wire laser

Maria I. Amanti, Giacomo Scalari, Fabrizio Castellano, Mattias Beck, and Jerome Faist  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 6390-6395 (2010)
http://dx.doi.org/10.1364/OE.18.006390


View Full Text Article

Acrobat PDF (208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Edge emitting, terahertz quantum cascade photonic-wire lasers, based on a third order Bragg grating are presented. Devices with a power consumption as low as 300mW, with a single frequency output power of more than 1.5mW are demonstrated. Their maximum operating temperature in continuous-wave mode operation is 110K and the emission is concentrated in a narrow beam (~30° divergence). Larger structure based on the same design show more than 10mW output power and more than 200mW/A slope efficiency at 10K continuous-wave operation.

© 2010 OSA

1. Introduction

The miniaturization of semiconductor laser waveguides is a key point toward the development of low power consumption sources and the implementation of high density systems in integrated circuit. However, the reduction of the waveguide lateral size strongly affects the laser beam directionality, fundamental feature for most of the applications. The diffraction law governs the beam divergence, fixing the limit to waveguide dimensions suitable for a narrow emission in edge-emitting lasers. In this work we present a mean to overcome this limit: THz laser waveguide with sub-wavelength lateral size, emitting in a narrow single lobe are reported.

Light waveguides, where the mode is strongly confined in a one dimensional structure with sub-wavelength area, are generally called photonic-wires. They are mostly used as passive components, integrated in complex systems for sensing or circuit integration [1

1. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si Photonic Wire Waveguide Devices,” Sel. Top. IEEE J. Quantum Electron. 12(6), 1371–1379 (2006). [CrossRef]

,2

2. A. Jugessur, J. Dou, J. Aitchison, R. D. L. Rue, and M. Gnan, “A Photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009). [CrossRef]

]. Similar structures, when used as active devices, are denominated photonic-wires lasers [3

3. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995). [CrossRef] [PubMed]

5

5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

]. In this work we present a photonic-wire laser operating at THz frequencies designed to overcome the diffraction limit of sub-wavelength waveguides. For this purpose, the out-coupling aperture for the laser light has been moved from the facet to the waveguide surface and the field distribution has been engineered to keep the emission direction along the device length (See Fig. 1
Fig. 1 Schematic of waveguides emitting from the facet and from the surface along the arrows direction. Calculated beam divergence in the case of the emission along the blue arrows (diffraction limit) and along the red arrow (phased array).
). A periodic array of apertures has been implemented along the waveguide to extract single frequency radiation from the active medium; at the same time the periodicity d has been designed to be ~λ/2 in order to provide the suitable phase distribution for light emission along the waveguide. This approach can be seen as good alternative to the velocity matching of the propagation mode to the vacuum, proposed in Ref [4

4. E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006). [CrossRef] [PubMed]

] for similar structures. Besides, the surface emission from sub-wavelength apertures has been avoided since the field distribution in this case requires two dimensional structures to enable a narrow laser beam; in this configuration, indeed, the beam divergence of one dimensional waveguides is governed by the laser length and by its width [6

6. S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007). [CrossRef] [PubMed]

8

8. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031104 (2010). [CrossRef]

].

Illustrative results are shown in Fig. 1 calculated beam divergence for the edge emitting phased array (red curves) are compared with the diffraction theory valid for standard edge and surface emitting devices (blue curves); the propagation of fundamental lateral mode has been considered. For the waveguide design implemented in this work, narrow laser beam in the sub-wavelength regime is predicted: narrower beams correspond to increasing values of the device length. Lasers with low electrical power consumption and low divergence are then expected for devices 5-10λ long.

2. Device fabrication and experimental results

The laser devices have been processed using standard procedure for the double metal THz waveguide and the grating has been defined using inductively coupled plasma dry-etching based on Cl2 Ar chemistry at 60°C and a low temperature grown (120°C) SiN mask. A typical device is show in Fig. 2(a)
Fig. 2 a) SEM photo of the device. Light-Voltage-Current characteristic in pulsed (a) and continous-wave operation (b) for a waveguide 15μm/5μm for the wide/narrow part.
the waveguide width is 15µm/5µm for the wide/narrow region. The two last periods of the grating have larger dimensions to allow the wire bonding for the electrical connections. The light-current-voltage curves for different temperature are presented in Fig. 2(b) and 2(c) for a device composed of 10 periods; the measurements have been performed both in pulsed and continuous mode operation.

The operating current are in the range from 20 to 30mA: these values are much lower than for standard devices. The output power at 10K is more than 1.5mW and more than 1mW at the nitrogen temperature, both in pulsed and continuous mode operation. The slope efficiency at 10K is 150mW/A and the dynamic range is 40%; the emission frequency is single mode with a side mode suppression ratio of 3 decades (Inset Fig. 2(c)). Due to the very low electrical power dissipation, the maximum operating temperature in continuous mode is 110K, only 10K lower than the value measured for pulsed operation. Besides, the beam emission has been measured recording the light intensity with a pyroelectric detector over a sphere around the device at a distance of 6 cm. Devices with different lengths and widths have been studied and compared with results obtained from our analytical approach based on the antenna theory; results are reported in Fig. 3
Fig. 3 Comparison between calculated (left side) and measured (right side) beam pattern for different waveguide widths and lengths. First line: 15μm/5μm wide, 10 periods long waveguide. Second line: 15μm/5μm wide, 15 periods long waveguide. Third line: 50μm/16μm wide, 15 periods long waveguide. Inset: schematic of the angles notation.
. The emission divergence for the wire laser, whose characteristic have been presented above (in Fig. 2), is only 22° for the α and 30° for the β direction (See inset Fig. 3 for the angles notation). A narrower beam has been obtained for structure with the same width but an increased number of periods (15 periods): the beam divergence decrease to a value of 15° for the α and 18° for the β direction as expected from calculations. To further prove our model a structure with the same length (15 periods) but different width has been tested (50µm/15µm for the wide/narrow region). The increasing of the waveguide width of a factor 3 does not yield a narrower beam, as expected if the light would have been out-coupled from the facet, but it leads to similar beam divergences as predicted by our model.

Due to the favorable extraction mechanism of this waveguide design, good laser performances have been obtained also for the wider waveguides (50µm/15µm for the wide/narrow region). The device is shown in Fig. 4(a)
Fig. 4 a) SEM photo of the device b) Light-Voltage-Current characteristic in continuous-wave operation for a waveguide of 50μm/15μm for the wide/narrow part. c) Tuning of the laser frequency with the grating period going from 35μm to 43μm.
. The light-current-voltage curves in continuous wave are reported in Fig. 4(b). The output optical power at 10K is 11mW with a slope efficiency is of more than 230mW/A for a single mode emission. The maximum operating temperature is 80K in continuous-wave, a good value for double-metal waveguide; on the other side this result is lower than what presented for the wire waveguide, where the benefit of a low electrical power consumption has been demonstrated. In Fig. 4(c) it is also presented the tuning of the laser frequency with the grating period, greatly desirable for applications.

3. Conclusions

In conclusion in this work we presented a successful gratin design to improve performance of photonic-wire laser. This idea could be applied to any frequency, both for passive and active element. Moreover at the terahertz frequency it could represents a valid approach to be combined with the results recently reported in ref [21

21. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3(12), 732–737 (2009). [CrossRef]

], to achieve a high power, tunable source, with a narrow beam emission.

Acknowledgments

This work was supported by the Swiss National Foundation under the NCCR project Quantum Photonics. The authors would like to acknowledge A.Bismuto for fruitful discussions.

References and links

1.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si Photonic Wire Waveguide Devices,” Sel. Top. IEEE J. Quantum Electron. 12(6), 1371–1379 (2006). [CrossRef]

2.

A. Jugessur, J. Dou, J. Aitchison, R. D. L. Rue, and M. Gnan, “A Photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009). [CrossRef]

3.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995). [CrossRef] [PubMed]

4.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006). [CrossRef] [PubMed]

5.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

6.

S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007). [CrossRef] [PubMed]

7.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Lin_eld, and G. A. Davies, “Electrically pumped photonic crystal terahertz semiconductor lasers controlled by boundary conditions,” Nature 457, 174–178 (2009). [CrossRef] [PubMed]

8.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031104 (2010). [CrossRef]

9.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002). [CrossRef] [PubMed]

10.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007). [CrossRef]

11.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1-2), 45–66 (2009). [CrossRef]

12.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single quantum well phonon extraction/injection stage,” N. J. Phys. 11(12), 125022b (2009). [CrossRef]

13.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002). [CrossRef]

14.

B. S. Williams, S. Kumar, Q. Huand, and J. L. Reno, “Operation of terahertz quantum cascade laser at 164K in pulsed mode and at 117 in continuos-wave mode,” Opt. Express 13(9), 3331–3339 (2005). [CrossRef] [PubMed]

15.

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16(5), 3242–3248 (2008). [CrossRef] [PubMed]

16.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009). [CrossRef]

17.

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides,” Opt. Lett. 30(21), 2909–2911 (2005). [CrossRef] [PubMed]

18.

R. D. Martin, S. Forouhar, S. Kea, R. J. Lang, R. G. Hunsperger, R. Tiberio, and P. F. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” Photonn Technoln Lett IEEE 7(3), 244–246 (1995). [CrossRef]

19.

C. A. Balanis, Antenna Theory (Wiley – Interscience, 2005)

20.

S. J. Orfanidis, Electromagnetic waves and antennashttp://www.ece.rutgers.edu/~orfanidi/ewa/, (2008).

21.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3(12), 732–737 (2009). [CrossRef]

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 1, 2010
Revised Manuscript: February 17, 2010
Manuscript Accepted: February 20, 2010
Published: March 12, 2010

Citation
Maria I. Amanti, Giacomo Scalari, Fabrizio Castellano, Mattias Beck, and Jerome Faist, "Low divergence Terahertz photonic-wire laser," Opt. Express 18, 6390-6395 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6390


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si Photonic Wire Waveguide Devices,” Sel. Top. IEEE J. Quantum Electron. 12(6), 1371–1379 (2006). [CrossRef]
  2. A. Jugessur, J. Dou, J. Aitchison, R. D. L. Rue, and M. Gnan, “A Photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009). [CrossRef]
  3. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995). [CrossRef] [PubMed]
  4. E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006). [CrossRef] [PubMed]
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  6. S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007). [CrossRef] [PubMed]
  7. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Lin_eld, and G. A. Davies, “Electrically pumped photonic crystal terahertz semiconductor lasers controlled by boundary conditions,” Nature 457, 174–178 (2009). [CrossRef] [PubMed]
  8. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031104 (2010). [CrossRef]
  9. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002). [CrossRef] [PubMed]
  10. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007). [CrossRef]
  11. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1-2), 45–66 (2009). [CrossRef]
  12. M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single quantum well phonon extraction/injection stage,” N. J. Phys. 11(12), 125022b (2009). [CrossRef]
  13. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002). [CrossRef]
  14. B. S. Williams, S. Kumar, Q. Huand, and J. L. Reno, “Operation of terahertz quantum cascade laser at 164K in pulsed mode and at 117 in continuos-wave mode,” Opt. Express 13(9), 3331–3339 (2005). [CrossRef] [PubMed]
  15. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16(5), 3242–3248 (2008). [CrossRef] [PubMed]
  16. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009). [CrossRef]
  17. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides,” Opt. Lett. 30(21), 2909–2911 (2005). [CrossRef] [PubMed]
  18. R. D. Martin, S. Forouhar, S. Kea, R. J. Lang, R. G. Hunsperger, R. Tiberio, and P. F. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” Photonn Technoln Lett IEEE 7(3), 244–246 (1995). [CrossRef]
  19. C. A. Balanis, Antenna Theory (Wiley – Interscience, 2005)
  20. S. J. Orfanidis, Electromagnetic waves and antennas http://www.ece.rutgers.edu/ ~orfanidi/ewa/, (2008).
  21. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3(12), 732–737 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited