OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6516–6521
« Show journal navigation

Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects

Xiong-Rui Su, Wei Zhang, Li Zhou, Xiao-Niu Peng, and Qu-Quan Wang  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6516-6521 (2010)
http://dx.doi.org/10.1364/OE.18.006516


View Full Text Article

Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrated plasmon-asssisted energy transfer (ET) between CdSe semiconductor quantum dots (QDs) self-assembled in a monolayer by using time-resolved μ-photoluminescence (PL) technique. The enhancements of PL intensity and ET efficiency were manipulated by adjusting thickness (Δ) of SiO2 coating on large Ag nanoparticles. The PL enhancement factor of the acceptor QDs and the PL intensity ratio of acceptor-to-donor reached their maxima ~ 47 and ~ 14 when Δ = 7 nm, the corresponding ET efficiency reached 86%. We also presented theoretical analysis based on the rate equation. The theoretical calculations agreed with experimental data and revealed interesting physics of multipole effect, and metal nanoparticle induced quench effect and plasmon-enhanced Förster ET.

© 2010 OSA

1. Introduction

Semiconductor quantum dots (QDs) have been studied extensively due to their tailorable energy levels and potential applications in optoelectronics and quantum information processing in the past decade. Several important quantum operations have been implemented in a single QD [1

1. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003). [CrossRef] [PubMed]

,2

2. Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005). [CrossRef] [PubMed]

]. Recently, manipulating interactions and coupling between two or more QDs has been attracted increasing interest [3

3. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]

5

5. M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007). [CrossRef]

], which is important for both fundamentals and practical applications to QDs-based quantum information processing.

Coulomb interaction is a key process for the coupling of optically excited QDs, which leads to energy transfer (ET) between QDs [6

6. T. Förster, In modern quantum chemistry: istanbul lectures. part III, Action of light and organic crystals; Sinanoglu, O., Ed.; Academic Press: New York, 1965, Part II. B.1, pp 93–137.

]. The ET occurred not only in QD-QD pair [7

7. C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008). [CrossRef]

9

9. S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett. 89(18), 186802 (2002). [CrossRef] [PubMed]

], but also in dye-QD and QD-MNP (metal nanoparticle) pairs [10

10. S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002). [CrossRef]

13

13. B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008). [CrossRef] [PubMed]

]. Recently, Bose et al improved the Förster ET efficiency of PbS QDs in solid films by decreasing the temperature [14

14. R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008). [CrossRef] [PubMed]

]. Hosoki et al observed unique energy transfer processes in QDs and MNPs bi-component monolayer films [15

15. K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008). [CrossRef] [PubMed]

], in which, the exciton-plasmon interaction lead to significant energy transfer from QDs to MNPs and quenching radiative emissions of QDs.

By adjusting structure of the nanosystems, plasmon-exciton interactions can also significantly fasten radiative decay rate and enhance radiative emissions of QDs due to the plasmon-induce field enhancement effect. Numerous theoretical and experimental studies have demonstrated QD-MNP two-body interaction and the plasmon-enhanced PL in various QD-MNP nanocomposites [16

16. A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006). [CrossRef]

21

21. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006). [CrossRef]

]. Only a few theoretical studies have been reported on the plasmon-enhanced QD-QD many-body Coulomb interactions [3

3. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]

,4

4. M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008). [CrossRef]

]. J. I. Gersten and A. Nitzan first reported the theoretical article on plasmon enhanced Förster resonance energy transfer (FRET) [17

17. J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984). [CrossRef]

,22

22. X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985). [CrossRef]

]. A. O. Govorov et al reported the theoretical studies on FRET between two QDs enhanced by plasmon of MNP [3

3. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]

], and pointed out the differences in the QD-MNP-QD nanosystems [22

22. X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985). [CrossRef]

]. Very recently, we reported enhancement of FRET between QDs by quadrupole and dipole plasmon resonances of the Ag NPs with diameter 110 nm [23

23. X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010). [CrossRef]

].

In this Letter, we further investigated multipole plasmon effects on the exciton energy between two kinds of CdSe QDs (marked as QDs_D and QDs_A), the size of Ag/SiO2 NPs is ~170 nm. The enhancements of photoluminescence (PL) intensity and ET rate were manipulated by adjusting the thickness of SiO2 coating layer and measured by using μ-PL spectroscopy. A modified model for the FRET rate was proposed and used in the simulations.

2. Experimental section

The water-soluble CdSe/ZnS QDs_D (λ em = 590 nm) and QDs_A (λ em = 650 nm) were decorated with negative charges and then mixed with volume ratio 106:80 in the aqueous solutions. The QDs monolayer films were prepared by using self-assembled technique following the procedure in Ref [24

24. X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006). [CrossRef] [PubMed]

,25

25. I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003). [CrossRef] [PubMed]

]. Ag NPs were prepared by using modified polyol method described in Ref [26

26. B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005). [CrossRef]

]. The synthesized Ag NPs were re-dispersed in ethanol solution and SiO2 shells were coated on the Ag NPs by Stöber method [27

27. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Coll. Inter. Sci. 26(1), 62–69 (1968). [CrossRef]

]. The thickness of SiO2 coating layer was controlled by the amounts of tetraethoxysilane (TEOS).

The microstructure of Ag/SiO2 NPs was investigated by transmission electron microscope (TEM) (JEOL-2010HT). The absorption spectra were investigated by a UV–vis–NIR spectrophotometer (Varian, Cary 5000). PL signal from the sample was collected by microscope setup (Mitutoyo, NA = 0.50, WD = 12 mm, 100 × ) and the emission spectra were recorded by a monochromator with a liquid nitrogen cooled CCD detector. The time-resolved PL (TRPL) decay traces were recorded by using time-correlated single-photon counting (TCSPC) system [28

28. Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007). [CrossRef] [PubMed]

]. The laser pulses were generated by a Ti:spphire laser (Mira 900, Coherent) with a pulse duration of ~3 ps and repetition rate of 76 MHz, and the excitation wavelength is 404 nm after a frequency doubler BBO crystal.

3. Results and discussions

3.1 Nanostructures and optical properties of Ag NPs and CdSe monolayer films

Figure 1(a)
Fig. 1 (a) TEM images Ag NPs with diameter 170 nm, and SiO2 shell thicknesses (b) 2 nm, (c) 3.5 nm, (d) 5 nm, (e) 7 nm, (f) 10 nm, and (g) 14 nm, respectively. (h) Illustration of the microstructure of a two-component QD monolayer and a single Ag/SiO2 NP. (i) Absorption spectra of Ag/SiO2 NPs, donor QDs_D with λ em = 590 nm and acceptor QDs_A λ em = 650 nm.
is TEM images of synthesized Ag NPs at the reaction time 60 min, the corresponding average diameter of Ag NPs is about 170 ± 15 nm. The thickness (Δ) of SiO2 coating on Ag NPs, Figs. 1(b)-(g) are the TEM images of Ag/SiO2 NPs with the thicknesses of SiO2 (Δ) coating on Ag NPs, Δ = 2 nm; 3.5 nm; 5 nm; 7 nm; 10 nm and 14 nm, respectively.

Figure 1(h) illustrates the nanostructure consisting of an Ag/SiO2 NP and a monolayer of QDs film. The PL center wavelength λ em of the donor QDs_D and acceptor QDs_A are 590 nm and 650 nm, respectively. Figure 1(i) shows the absorption edges of QDs_D and QDs_A around 580 and 642 nm, both locate in the plasmon absorption band of large Ag NPs. The surface plasmon resonance absorption peak of Ag NPs with diameter of 170 nm is around 430 nm. The field enhancement at λ em = 590 nm is slightly stronger than that at λ em = 650 nm. The PL intensity ratio of acceptor-to-donor is ~1.0 in QDs monolayer film without Ag NPs.

3.2 Plasmon-enhanced FRET via multipole effects

Figs. 2(a)
Fig. 2 Spatial and spectral distributions of PL from a monolayer of two-component QDs thin film enhanced by large Ag/SiO2 NPs with Δ = 7 nm. (a) Conventional PL image. (b) Spectral PL image. (c) Spatial distributions of PL intensity of the donors and acceptors (d) .The spectral distributions of PL from a two-component QDs monolayer with (y = 0.0 μm) and without (y = 8.0 μm) enhancement of Ag/SiO2 NPs.
and 2(b) show the PL and spectral image of a QDs monolayer enhanced by large Ag/SiO2 NPs with 2R = 170 nm and Δ = 7 nm. Figure 2(c) gives the y-cross sections of spectral image at λ em = 590 and 650 nm, which are PL spectra of QDs_D and QDs_A It reveals that the PL enhancement factors are 3.5 and 46.8 for the donors and acceptors, respectively. Figure 2(d) gives the x-cross sections of spectral image at the position y = 0 and 8.0 μm, which represents the PL spectra of QDs monolayer with and without enhancement of Ag/SiO2 NPs. One can see clearly that the PL intensity ratio I PL,A/I PL,D of acceptor-to-donor is about 1.0 without plasmon enhancement (y = 8.0 μm) and is enhanced to as high as 13.5 by large Ag NPs (y = 0 μm). The increasing of ratio I PL,A/I PL,D indicates exciton flowing from QDs_D to QDs_A.

The variations of PL enhancement factors and ratio I PL,A/I PL,D with thickness of SiO2 on Ag NPs are shown in Figs. 3(a)
Fig. 3 PL enhancement of two-component and one-component QDs monolayer as a function of thickness of SiO2 on Ag NPs. (a) PL enhancement factors of the acceptors QDs_A and donors QDs_D in two-component QDs monolayer (solid lines) versus SiO2 thickness on Ag NPs. (b) PL intensity ratio I PL,A/I PL,D of the acceptor-to-donor reached the maximum ~ 14 at Δ = 7 nm.
and 3(b), respectively. Each data in Fig. 3 is the average of five different Ag NPs. The PL enhancement factor at λ em = 650 nm and the ratio I PL,A/I PL,D reached the maxima when Δ = 7 nm. As Δ decreased from 14 nm to 7 nm, PL enhancement factor increased from 9.5 to 47, and the ratio I PL,A/I PL,D dramatically increased from 1.9 to 14.

The PL enhancement factor at λ em = 650 nm of one-component QDs_A monolayer was investigated, which is much smaller than the two-component monolayer. This is an additional evidence that the exciton transferred from the donor QDs_D to the acceptor QDs_A in two-component SQDs monolayer. To further quantify the plasmon-enhanced ET between QDs, the TRPL decay behaviors of a group of QDs samples were comparatively investigated under the same experimental conditions. The TRPL decay traces of isolated QDs_D and QDs_A in monolayer films were well fitted by one-exponential function, and the lifetimes were measured to be about 15.6 ± 0.2 ns and 25.6 ± 0.4 ns, respectively.

Figure 4(a)
Fig. 4 TRPL and decay rates of QDs monolayer. (a) One-exponential TRPL decay trace of the acceptors QDs_A (red) and two-exponential TRPL decay trace of the donors QDs_D (blue) in a two-component QDs monolayer enhanced by large Ag/SiO2 NPs with Δ = 7 nm. (b) Fast decay rate τf ,D and slow decay rate τs ,D of donor QDs_D and decay rate τ A of acceptor QDs_A increased as the decreasing of SiO2 thickness on Ag NPs.
shows the TRPL of a two-component QDs monolayer with large Ag/SiO2 NPs (Δ = 7nm) recorded at λ em = 590 and 650 nm. The TRPL decay traces of the donor QDs_D can be approximately fitted by two-exponential function. The decay times of fast and slow processes are fitted to be τf ,D ~ 2.4 ns and τs ,D ~ 12.5 ns, the relative amplitude of the fast process is about 0.18, and the R 2 (statistical test on the fit) result is 0.97. On the contrary, the TRPL decay traces of the acceptor QDs_A can be well reproduced by one-exponential function, the decay time τ A is about 20.7 ns, and R 2 = 0.94. The total decay rates of the donor QDs_D and acceptor QDs_A can be expressed as [3

3. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]

], γD=γrad,D+γnonrad,D0+γMNP,D+γET; γA=γrad,A+γnonrad,A0+γMNP,A, where γrad is radiative rate, γnonrad0 is intrinsic nonradiative rate of QDs and can be neglected comparing to γrad, γ MNP is the nonradiative decay rate of energy transfer QD→MNP, and γ ET is ET rate of exciton transfer QDs_D→QDs_A. For the acceptor QDs_A, the decay rate at λ em = 650 nm is increased about 18% by Ag/SiO2 NPs with Δ=7nm comparing to the bare QDs, This is due to small increasing of radiative rate and the nonradiative rate γ MNP,A << γ rad,A caused by the off-resonance plasmon enhancement. Similarly for the donor QDs_D, the slow decay rate 1/τs ,Dγ rad,D+γ MNP,D at λ em = 590 nm is increased about 22%, The fast decay rate 1/τf ,D should be mainly attributed to γ ET. Then, we got the estimation γ ET ~1/τf ,D ~0.4 ns−1.

Figure 4(b) plots the decay rates 1/τf ,D, 1/τs ,D and 1/τ A of QDs monolayer as a function of SiO2 thickness on Ag NPs. As Δ decreased from 14 nm to 3.5 nm, the fast decay rate 1/τf ,D of donor QDs_D increased from 0.23 to 0.72 ns−1 and the slow decay rate 1/τs ,D increased from 0.067 to 0.091 ns−1; and the decay rate 1/τ A of acceptor QDs_A increased from 0.042 to 0.046 ns−1. The variations of 1/τs ,D versus Δ and 1/τ A versus Δ are very similar, but the fast decay rate 1/τf ,D of the donors is much more sensitive to the distance between QDs and large Ag NP.

3.3 Theoretical simulation of plasmon-enhanced FRET by multipole effects

For the large MNP, the multipole effects are important and the inter-particle dependence is different from that within dipole approximation. Considering large size of MNP and small separation distance between QDs and MNP, we deduced the relationships of the FRET rate γ ET, nonradiative rate from QDs to MNP γ MNP [3

3. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]

,16

16. A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006). [CrossRef]

,19

19. J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008). [CrossRef]

21

21. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006). [CrossRef]

],
γET=γET0|1+δd03/(d02+Δ2)3/2|2
(1)
γMNP/γrad0=(β/Δ)3
(2)
where β=(λ/2π)[Im(α')/4εe3/2]1/3, δ=(4/3)Re(α'), and α'=(εmεe)/(εm+εe), d 0 (≈8 nm) is the inter-particle distance between QDs, ε m and ε e are the dielectric constants of Ag NPs and background SiO2, respectively. The field enhancement factor is,
f=1+2|α|2RMNP6/(RMNP+Δ)6
(3)
where |α|=|(εmεe)/(εm+2εe)|By fitting the experimental data of decay rates in Fig. 4 and PL enhancement in Fig. 3, we obtained γF0 = 0.262 ns−1, δ = 1.625. |α| = 4.02 and β = 4.64 nm. We may also obtain the parameters δ, α, β from microscopic theory. Under some approximations, for instance, neglecting the thickness dependence of the effective dielectric constant ε m (taking into account the effect of SiO2 shell (Δ = 7 nm)) and polarization (of exciton) factor, we have |α| = 4.47, δ = 1.34, β = 8.28 nm. These parameters are in the same order as those from fitting to experimental data, thus support the proposed theoretical model. Our theoretical calculations give the maximal I PL,A/I PL,D about 10.3 when Δ = 7 nm. Figure 5
Fig. 5 Theoretical calculations of PL enhancements and ET rate. (a) Schematic of image dipole. (b) Calculated relation γ ET ~Δ. (c) Calculated relations PL enhancements ~Δ.
shows the calculated curves of γ ET ~Δ and I PL,A/I PL,D ~Δ, which qualitatively reproduced the experimental observations. Our theory also gives the plasmon-enhancement decay rate 29% and FRET efficiency 83%, which is close to experiment results 22% (for QDs_D) and 86%. From the theoretical calculations, we see that the PL enhancements are determined by three factors: the local field enhancement factor (f), nonradiative decay rate γ MNP, and plasmon-assisted energy transfer rate γ ET. The value of f, γ MNP and γ ET all increase with decreasing the thickness of SiO2 (Δ). However they have different dependences on Δ. Moreover, for our system with large MNP, the multipole effects are important and the inter-particle dependence is different from that within dipole approximation [3

3. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]

]. It is the competition among these factors and the multipole effects [19

19. J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008). [CrossRef]

21

21. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006). [CrossRef]

] that lead to the optimal thickness for PL enhancement and ET efficiency.

The ordinary ET processes only occur at very short distance on the order of just a few nanometers [29

29. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996). [CrossRef] [PubMed]

]. In the presence of large Ag NPs, plasmon-mediated long-distance ET could occur on the order of several tens nanometers and the probability of multipole acceptor processes could be increased [4

4. M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008). [CrossRef]

], which lead to the improvement of ET efficiency.

4. Conclusions

In summary, we reported highly efficient ET of CdSe QDs monolayer enhanced by large Ag/SiO2 core-shell NPs. The PL enhancement factor of acceptor QDs_A is ~ 47, PL intensity ratio of acceptor-to-donor reaches ~ 14, ET rate is estimated to be ~ 0.4 ns−1 and the ET efficiency reaches ~ 86% when the thickness of SiO2 is 7 nm. Our observations demonstrated that the plasmon is an efficient tool to enhance the Coulomb interactions between QDs.

Acknowledgements

This work was supported by NSFC (Nos. 10874020 and 10874134), a grant of the China Academy of Engineering and Physics, and Key Project of Ministry of education (708063).

References and links

1.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003). [CrossRef] [PubMed]

2.

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005). [CrossRef] [PubMed]

3.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]

4.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008). [CrossRef]

5.

M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007). [CrossRef]

6.

T. Förster, In modern quantum chemistry: istanbul lectures. part III, Action of light and organic crystals; Sinanoglu, O., Ed.; Academic Press: New York, 1965, Part II. B.1, pp 93–137.

7.

C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008). [CrossRef]

8.

T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004). [CrossRef]

9.

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett. 89(18), 186802 (2002). [CrossRef] [PubMed]

10.

S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002). [CrossRef]

11.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004). [CrossRef] [PubMed]

12.

Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005). [CrossRef]

13.

B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008). [CrossRef] [PubMed]

14.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008). [CrossRef] [PubMed]

15.

K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008). [CrossRef] [PubMed]

16.

A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006). [CrossRef]

17.

J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984). [CrossRef]

18.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002). [CrossRef] [PubMed]

19.

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008). [CrossRef]

20.

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006). [CrossRef] [PubMed]

21.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006). [CrossRef]

22.

X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985). [CrossRef]

23.

X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010). [CrossRef]

24.

X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006). [CrossRef] [PubMed]

25.

I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003). [CrossRef] [PubMed]

26.

B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005). [CrossRef]

27.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Coll. Inter. Sci. 26(1), 62–69 (1968). [CrossRef]

28.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007). [CrossRef] [PubMed]

29.

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996). [CrossRef] [PubMed]

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(260.2160) Physical optics : Energy transfer
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: January 4, 2010
Revised Manuscript: February 24, 2010
Manuscript Accepted: February 25, 2010
Published: March 15, 2010

Citation
Xiong-Rui Su, Wei Zhang, Li Zhou, Xiao-Niu Peng, and Qu-Quan Wang, "Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects," Opt. Express 18, 6516-6521 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-6516


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003). [CrossRef] [PubMed]
  2. Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005). [CrossRef] [PubMed]
  3. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]
  4. M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008). [CrossRef]
  5. M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007). [CrossRef]
  6. T. Förster, In modern quantum chemistry: istanbul lectures. part III, Action of light and organic crystals; Sinanoglu, O., Ed.; Academic Press: New York, 1965, Part II. B.1, pp 93–137.
  7. C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008). [CrossRef]
  8. T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004). [CrossRef]
  9. S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett. 89(18), 186802 (2002). [CrossRef] [PubMed]
  10. S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002). [CrossRef]
  11. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004). [CrossRef] [PubMed]
  12. Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005). [CrossRef]
  13. B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008). [CrossRef] [PubMed]
  14. R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008). [CrossRef] [PubMed]
  15. K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008). [CrossRef] [PubMed]
  16. A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006). [CrossRef]
  17. J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984). [CrossRef]
  18. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002). [CrossRef] [PubMed]
  19. J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008). [CrossRef]
  20. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006). [CrossRef] [PubMed]
  21. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006). [CrossRef]
  22. X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985). [CrossRef]
  23. X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010). [CrossRef]
  24. X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006). [CrossRef] [PubMed]
  25. I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003). [CrossRef] [PubMed]
  26. B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005). [CrossRef]
  27. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Coll. Inter. Sci. 26(1), 62–69 (1968). [CrossRef]
  28. Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007). [CrossRef] [PubMed]
  29. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited