OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6598–6603
« Show journal navigation

Investigation on the role of the dielectric loss in metamaterial absorber

ChengGang Hu, Xiong Li, Qin Feng, Xu’Nan Chen, and XianGang Luo  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6598-6603 (2010)
http://dx.doi.org/10.1364/OE.18.006598


View Full Text Article

Acrobat PDF (1112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The authors report a metamaterial (MM) consisting of cut-wire structures which shows near-perfect absorption at microwave frequencies. Experimental results show slight lower performance than simulation. The analysis of the spectra and retrieved electromagnetic parameters demonstrate that the mismatch is attributed to the considerable influence of the dielectric loss on the strength of the electric and magnetic resonances, which largely determines the ability of the MM absorber. Such dependence on dielectric loss provides an important clue for the design of MM absorber aiming at specific applications where high efficiency energy collection in dielectric is needed.

© 2010 OSA

1. Introduction

2. Structure and experimental results

Figure 1(a)
Fig. 1 (Color online) (a) Schematic drawing of the unit cell, the inset shows the polarization direction of the incident wave. Different incident directions are realized by tuning the angle (θ). (b) and (c) Top and bottom structures of the sample used in experiments, respectively.
shows the elementary cell of the MM absorber which includes two metallic elements: a top split-cut-wire and a bottom cut-wire. The double cut-wires design is analogous with the conventional cut-wire pair [8

8. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005). [CrossRef] [PubMed]

,9

9. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]

]. The metallic portion is copper with conductivity of 5.8 × 107 S/m. CST microwave studio (CST 2006B) was used to theoretically investigate the proposed MM absorber. Figure 2(a)
Fig. 2 (Color online) (a) Measured and simulated spectra of the MM absorber. Standing waves are observed in the spectra. (b) Absorption with different incident angles. The solid curve and the discrete red dots represent the simulated and measured results, respectively. The inset demonstrates the method used in the reflection measurement. The normal R(ω) is approximated by the oblique R(ω) with a small angle (θ = 5 degree).
shows the optimum results. T(ω) and R(ω) are simultaneously suppressed to near zero at 4.87GHz, which result in A(ω) about 98.6% (A(ω) = 1-T(ω)-R(ω)). In simulations, the metal has standard thickness of 0.035 mm. The substrate is set to be FR4 board with standard thickness of 0.53 mm and measured permittivity of 4.1 (between 4 and 6GHz, the imaginary part cannot be accurately detected in a large area due to the limitation of our microwave measurement’s precision) to keep consistent with the following experiments. The optimum results are obtained when Im(ε d) of FR4 board is set to be 0.03 and MM absorber has the dimensions of: P y = 16 mm, P x = 32 mm, w = 8 mm, l = 30 mm and d = 1 mm.

To experimentally verify the performance of the MM absorber, the sample is fabricated as following way: FR4-S1141 circuit board is chosen to be the substrate. The top and bottom metallic structures are respectively printed on the two sides of the board, as shown in Fig. 1(b) and (c). The geometric parameters of the sample are same with that used in simulations (smaller than 0.005 mm error, little influence is observed). In experiments, two microwave horns are used as the transmitting and receiving ports. Both horns have the same cross section of 109.3 × 54.8 mm2, the same effective frequency band from 4.05 to 5.99 GHz and the same vertical polarization direction. A vector network analyzer (AV3629) is utilized as an electromagnetic wave source to produce microwaves in the range of 4 to 6 GHz. The sample is placed in such way as shown in Fig. 1(a) to realize the effective electromagnetic responses. The distance between the transmitting\receiving horn and the sample is set to be 500 mm, which is a long enough space to obtain the near plane wave radiation. All equipments are located into an environment decorated with high absorption materials around, whose ability reaches −38 dB to eliminate the influence of the unwanted scattering. T(ω) and R(ω) are obtained by measuring the complex S(ω) parameters, including S 21(ω) and S 11(ω), of the sample.

The experimental results (T(ω) = |S 21(ω)|2 and R(ω) = |S 11(ω)|2) are also shown in Fig. 2(a). It can be observed that a sharp R(ω) drop about −13 dB (linear value 5%) and a T(ω) drop about −28 dB (linear value 0.16%) simultaneously exist at the same frequency (4.87GHz), which result in a high A(ω) about 94.84%. While there exists an obvious disagreement between the simulated and measured results, especially the two R(ω) values at 4.87GHz, although the frequency point in experiments matches well with that in simulations. This disagreement also exists when incident wave is oblique. The simulated A(ω) decreases when the incident angle changes from 5 to 60 degree as shown in Fig. 2(b). The measured values have the analogous behavior, but are always smaller than the simulated ones.

3. Discussions

In experiments, all measurable parameters are the same with those in simulations. While, due to the limitation mentioned above, Im(ε d) is the uncertain parameter. Thus, in our opinion, it may be the major contributor to the disagreement between simulations and experiments. Figure 3
Fig. 3 (Color Online) (a) Absorption with different Im(ε d) of the dielectric. The inset shows the amplified picture marked by the blue rectangle.
show the simulated influence of Im(ε d) on A(ω). The absorption has two different behaviors: a rapid enhancement and a gradual decrease. First, It can be seen that only 21.5% energy is absorbed when Im(ε d) ideally equals to zero (the dielectric is absolutely lossfree). All absorbed energy is consumed in metal. Then, the absorption is rapidly enhanced to a maximum value 98.6% when Im(ε d) increases from zero to 0.03. Second, the absorption gradually decreases to a constant about 27% when Im(ε d) is further increased. In the two distinct situations, both larger (0.05) and smaller (0.02) value of Im(ε d) can suppress the simulated absorption to match well with the measured value. It can be easily understood that a larger Im(ε d) produces a larger loss in dielectric, resulting in good performance of the MM absorber. While the unexpected point is the falling down of the absorption when Im(ε d) exceeds over the optimum value. It means that larger Im(ε d) does not always imply more loss in the dielectric and higher absorption. There exists the additional influence of Im(ε d) on the MM absorber.

In order to figure out the additional influence, we analyze the electromagnetic parameters, including the effective permeability (μ) and permittivity (ε), of the MM absorber. Figure 4
Fig. 4 (Color online) Variations of Re(μ) and Re(ε) of the MM absorber with increasing Im(ε d).
show the retrieved real parts of μ and ε (Re(μ) and Re(ε)). Two variations of Re(μ) and Re(ε) are observed. First, the oscillation of Re(μ) is very large when Im(ε d) equals to zero, which indicates the strongest magnetic response. Then it is suppressed with increasing Im(ε d), and finally disappears when Im(ε d) equals to 0.13. This result demonstrates that the strength of the magnetic resonance in the MM absorber is much influenced by Im(ε d) when other relevant parameters are constant. In fact, in the magnetic resonance supported by the cut-wire structures, the participation of the bottom cut-wire into the magnetic resonance is gradually restricted when Im(ε d) increases, even fully eliminated when Im(ε d) has a big enough value, such as 0.13. Thus, although both the magnetic resonant elements and outside source exist, the magnetic resonance is fully turned off. Likewise, the oscillation of Re(ε) is also tuned by Im(ε d), which indicates the influence of Im(ε d) upon the electric resonance supported by the spilt-cut-wire. This behavior is analogous with the dynamical electric response realized by an active control over the dielectric in MM [10

10. W. J. Padilla, A. J. Taylor, C. Highstrete, M Lee, and R. D Averitt, “Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies ,” Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]

,11

11. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]

].

Additionally, Re(μ) and Re(ε) come closer when Im(ε d) increases from zero to 0.03. This indicates the impedance of the MM absorber is closer to unity. Especially, Re(μ) and Re(ε) have the same values in the range of 4.8 to 4.9 GHz when Im(ε d) equals to 0.03, which indicates impedance matching between the MM absorber and the outside space.

The dependence of the MM absorber’s electromagnetic responses on Im(ε d) can also be seen in the T(ω) and R(ω) spectra with different Im(ε d), as shown in Fig. 5
Fig. 5 (Color online) (a) Transmission and (b) Reflection spectra with increasing Im(ε d).
. The T(ω) drop gradually disappears when Im(ε d) increases. It indicates that stronger magnetic resonance brings deeper T(ω) drop. If there is no magnetic resonance, then no T(ω) drop is observed. R(ω) has a minimum when Im(ε d) equals to 0.03. However, the impedance of the MM absorber is mismatched again when Im(ε d) gradually moves away from 0.03, resulting in the increasing R(ω) as shown in Fig. 5(b).

At the end of the paper, as a necessary supplement, we discuss the energy into MM absorber. In other MM absorber which utilizing localized or un-localized surface plasmon (SP) coupling [6

6. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009). [CrossRef] [PubMed]

,7

7. C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009). [CrossRef] [PubMed]

,12

12. T. V. Teperik, F. J Garcia de abajo, A. G Borisov, M Abdelsalam,, P. N Bartlett, Y Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nano-structured metal surfaces,” Nature Lett. 2, 299–301 (2008).

], almost all absorbed energy is consumed in metal. Figure 6
Fig. 6 (Color online) Absorption spectra when Im(ε d) equals to 0.03 and zero. About 77% energy is consumed in dielectric.
compares the two absorption rates of the proposed MM absorber when dielectric is lossy (Im(ε d) = 0.03) and lossfree (Im(ε d) = 0), respectively. It shows that about 77% energy is collected and consumed in dielectric when the MM absorber has maximum absorption. Thus, compared with the absorber based on SP coupling, the large dielectric absorption indicates the potential advantage of the MM absorber in some domains where energy needs to be collected by dielectric.

4. Conclusions

In conclusion, a design of MM absorber constructed by cut-wire structures is theoretically and experimentally presented in this paper. An obvious mismatch is found between the measured and simulated absorption. This phenomenon is explained by investigating the role of the imaginary part of the dielectric in absorber. Our results show that the imaginary part of the dielectric has considerable influence on the resonant system in MM absorber. It not only behaves as a source to introduce loss, but also is seen as an effective element which can be utilized to tuning the strength of the electric and magnetic resonances. Our results are helpful to analyze the maximization of the MM absorber’s ability in capturing electromagnetic energy.

Acknowledgments

This work is supported in part by the Nation Basic Research Program (973) of China under Grant No. 2006CB302900, in part by the Chinese Nature Science Grant (No. 60825405).

References and links

1.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]

2.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008). [CrossRef]

3.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008). [CrossRef] [PubMed]

4.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009). [CrossRef]

5.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the therahertz regime,” Phys. Rev. B 79(3), 033101 (2009). [CrossRef]

6.

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009). [CrossRef] [PubMed]

7.

C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009). [CrossRef] [PubMed]

8.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005). [CrossRef] [PubMed]

9.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]

10.

W. J. Padilla, A. J. Taylor, C. Highstrete, M Lee, and R. D Averitt, “Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies ,” Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]

11.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]

12.

T. V. Teperik, F. J Garcia de abajo, A. G Borisov, M Abdelsalam,, P. N Bartlett, Y Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nano-structured metal surfaces,” Nature Lett. 2, 299–301 (2008).

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: January 26, 2010
Revised Manuscript: March 2, 2010
Manuscript Accepted: March 5, 2010
Published: March 15, 2010

Citation
ChengGang Hu, Xiong Li, Qin Feng, Xu’Nan Chen, and XianGang Luo, "Investigation on the role of the dielectric loss in metamaterial absorber," Opt. Express 18, 6598-6603 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-6598


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  2. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008). [CrossRef]
  3. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  4. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009). [CrossRef]
  5. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the therahertz regime,” Phys. Rev. B 79(3), 033101 (2009). [CrossRef]
  6. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009). [CrossRef] [PubMed]
  7. C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009). [CrossRef] [PubMed]
  8. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005). [CrossRef] [PubMed]
  9. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  10. W. J. Padilla, A. J. Taylor, C. Highstrete, M Lee, and R. D Averitt, “Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies ,” Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  11. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  12. T. V. Teperik, F. J Garcia de abajo, A. G Borisov, M Abdelsalam,, P. N Bartlett, Y Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nano-structured metal surfaces,” Nature Lett. 2, 299–301 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited