## Observation of photorefractive simultons in lithium niobate

Optics Express, Vol. 18, Issue 8, pp. 7972-7981 (2010)

http://dx.doi.org/10.1364/OE.18.007972

Acrobat PDF (723 KB)

### Abstract

Spatial and temporal locking of fundamental and second harmonic pulses was realized by means of photorefractive nonlinearity and highly mismatched harmonic generation. Due to the presence of both phase-locked and unlocked second harmonic pulses, a twin simultonic state was observed. Simultonic filamentation occurring at high pumping rates allowed us to determine a relation between the simulton’s waist and its intensity.

© 2010 OSA

## 1. Introduction

1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of Optical beams,” Phys. Rev. Lett. **13**(15), 479–482 (1964). [CrossRef]

2. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. **15**(9), 471–473 (1990). [CrossRef] [PubMed]

7. A. V. Buryak, Y. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A **52**(2), 1670–1674 (1995). [CrossRef] [PubMed]

8. G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. **71**(4), 533–536 (1993). [CrossRef] [PubMed]

10. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. **85**(12), 2193–2195 (2004). [CrossRef]

1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of Optical beams,” Phys. Rev. Lett. **13**(15), 479–482 (1964). [CrossRef]

10. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. **85**(12), 2193–2195 (2004). [CrossRef]

11. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. anomalous dispersion,” Appl. Phys. Lett. **23**(3), 142 (1973). [CrossRef]

13. P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of Temporal Solitons in Second-Harmonic Generation with Tilted Pulses,” Phys. Rev. Lett. **81**(3), 570–573 (1998). [CrossRef]

14. X. Liu, L. J. Qian, and F. W. Wise, “Generation of spatio-temporal solitons,” Phys. Rev. Lett. **82**(23), 4631–4634 (1999). [CrossRef]

_{3}crystals because of the simultaneous action of Kerr and cascading nonlinearities. However, the weak nonlinearities requires very intense laser beams to reach such soliton regime, as high as 70 GW/cm

^{2}, a value very close to the damage threshold of the material (100 GW/cm

^{2}). In this paper we demonstrate that such simultons [15

15. M. J. Werner and P. D. Drummond, “simulton solutions for the parametric amplifier,” J. Opt. Soc. Am. B **10**(12), 2390–2393 (1993). [CrossRef]

6. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. **74**(25), 5036–5039 (1995). [CrossRef] [PubMed]

8. G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. **71**(4), 533–536 (1993). [CrossRef] [PubMed]

16. V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. **42**(8), 463–465 (2006). [CrossRef]

17. F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, “Frequency doubling in self-induced waveguides in lithium niobate,” Opt. Commun. **272**(1), 238–241 (2007). [CrossRef]

19. F. Pettazzi, V. Coda, G. Fanjoux, M. Chauvet, and E. Fazio, “Dynamic of second harmonic generation in photovoltaic photorefractive quadratic medium,” J. Opt. Soc. Am. B **27**(1), 1–9 (2010). [CrossRef]

_{33}= 41.7 pm/V [20]) that usually cannot be fully exploited in bulk because of difficulties to obtain phase-matching, Periodically poled LiNbO

_{3}has brought an elegant solution to this problem. However, it was recently shown that working in high dispersion regime (Δk ∝ 10

^{4}cm

^{−1}), thus very far from phase matching, reveals intriguing behavior. A very weak SH generation is possible even using a polarization coupling of type 0 (ee-e) linked to the d

_{33}coefficient but in such a regime the generated SH splits into two pulses. One pulse travels with a lower speed than the fundamental pulse, as expected from the mismatching, but the second pulse is perfectly locked together with the pump pulse (they experience exactly the same phase- and group- velocities [21

21. N. Bloembergen and P. S. Pershan, “Light Waves at the Boundary of Nonlinear Media,” Phys. Rev. **128**(2), 606–622 (1962). [CrossRef]

24. E. Fazio, F. Pettazzi, M. Centini, M. Chauvet, A. Belardini, M. Alonzo, C. Sibilia, M. Bertolotti, and M. Scalora, “Complete spatial and temporal locking in phase-mismatched second-harmonic generation,” Opt. Express **17**(5), 3141–3147 (2009). [CrossRef] [PubMed]

25. J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express **17**(24), 22209–22216 (2009). [CrossRef] [PubMed]

## Samples

### Experiments

^{2}.

**Low intensity**– By injecting a fundamental beam at 800nm with input powers lower than 160 μW, no self-confinement was observable when applying the pyroelectric field (Fig. 3 ).

**Simulton intensity –**As the input average power was increased up to 160 μW, the generated second-harmonic became more important and efficient self-focusing occurred after the pyroelectric field was applied (Fig. 4 –Media 1). As it may be observed in the movie, the photorefractive nonlinearity is indeed cumulative: it requires some time to accumulate charges in sufficient quantities to induce self-focusing. Instead, the photovoltaic effect is almost instantaneous with the free-charge generation. Consequently the beam initially experiences a defocusing because of the photovoltaic field. Because of such defocusing the central part of the beam becomes depleted, and the light accumulates along the external ring, more concentrated in the upper and lower areas of the ring [26

26. J. Safioui, M. Chauvet, F. Devaux, V. Coda, F. Pettazzi, M. Alonzo, and E. Fazio, “Polarization and configuration dependence of beam self-focusing in photorefractive LiNbO_{3},” J. Opt. Soc. Am. B **26**(3), 487–492 (2009). [CrossRef]

**Twin simultonic state –**We observe that the unlocked pulses also modify the refractive index and generate a solitonic state as well. Initially this additional process is slower that the development of the simultonic state, because it is not assisted by the fundamental beam but it regards only the second harmonic signal.

## Numerical simulation

27. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics **22**, 949 (1979). [CrossRef]

28. F. Pettazzi, V. Coda, G. Fanjoux, M. Chauvet, and E. Fazio, “Dynamic of second harmonic generation in photovoltaic photorefractive quadratic medium,” J. Opt. Soc. Am. B **27**(1), 1–9 (2010). [CrossRef]

29. E. Fazio, F. Pettazzi, M. Centini, M. Chauvet, A. Belardini, M. Alonzo, C. Sibilia, M. Bertolotti, and M. Scalora, “Complete spatial and temporal locking in phase-mismatched second-harmonic generation,” Opt. Express **17**(5), 3141–3147 (2009). [CrossRef] [PubMed]

_{33}coefficient as high as

*Δk*as large as

^{2}, which corresponds to 160 μW of average beam power (third-order nonlinearities have been neglected in the calculation because they should have a very fast response while the observed phenomena are much slower, within 5 min since the second-harmonic process started, and the pyroelectric field turned on). In the beginning, when no modifications in the refraction have yet to occur, both the locked and unlocked second-harmonic waves diffract along different directions (first two simulations from the top) due to the Snell-Cartesio refraction at the input face. Later on the second harmonic light, which is absorbed now by the lithium niobate host material, modifies the refractive index writing a guiding channel. Such phenomenon occurs initially just for the locked pulses: in fact the self-focusing of locked pulses induces waveguiding for the fundamental locked pulses as well. Consequently, the locked pulses generate a simultonic state.

## Filamentation into simultonic channels

^{2}, which corresponds to 160 μW of average power. Thus, we considered this value as the fundamental simulton intensity, demonstrated from both the experimental and numerical points of view.

^{2}of input pump intensity, due to modulation instability the second harmonic beams generate several filaments, as shown in Fig. 7 (Media 2).

## Conclusions

^{2}pump at 800nm, generating a second harmonic signal at 400nm. The numerical simulations confirmed the experimental observations Solitonic filamentation allowed us to derive a general relationship between the hyperbolic waist and the relative intensity.

## Acknowledgments

*processi ottici nonlineari di generazione di armonica in materiali massivi e nanostrutturati altamente dispersivi)*and B) ricerche di ateneo federato 2008 (

*generazione di seconda armonica in sistemi dispersivi e nano strutturati*). E.F. is grateful to the Université de Franche Comté for the visiting professorship under which part of this work has been performed. A.M.D.G.

## References and links

1. | R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of Optical beams,” Phys. Rev. Lett. |

2. | J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. |

3. | Y. N. Karamzin and A. P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Sov. Phys. JETP |

4. | A. V. Buryak and Y. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. |

5. | C. R. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to χ |

6. | W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. |

7. | A. V. Buryak, Y. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A |

8. | G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. |

9. | M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. |

10. | E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. |

11. | A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. anomalous dispersion,” Appl. Phys. Lett. |

12. | A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion,” Appl. Phys. Lett. |

13. | P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of Temporal Solitons in Second-Harmonic Generation with Tilted Pulses,” Phys. Rev. Lett. |

14. | X. Liu, L. J. Qian, and F. W. Wise, “Generation of spatio-temporal solitons,” Phys. Rev. Lett. |

15. | M. J. Werner and P. D. Drummond, “simulton solutions for the parametric amplifier,” J. Opt. Soc. Am. B |

16. | V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. |

17. | F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, “Frequency doubling in self-induced waveguides in lithium niobate,” Opt. Commun. |

18. | F. Pettazzi, M. Alonzo, M. Centini, A. Petris, V. I. Vlad, M. Chauvet, and E. Fazio, “Self-trapping of low-energy infrared femtosecond beams in lithium niobate,” Phys. Rev. A |

19. | F. Pettazzi, V. Coda, G. Fanjoux, M. Chauvet, and E. Fazio, “Dynamic of second harmonic generation in photovoltaic photorefractive quadratic medium,” J. Opt. Soc. Am. B |

20. | V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals. 2nd edition, (Springer). |

21. | N. Bloembergen and P. S. Pershan, “Light Waves at the Boundary of Nonlinear Media,” Phys. Rev. |

22. | M. Mlejnek, E. M. Wright, J. V. Moloney, and N. Bloembergen, “Second Harmonic Generation of Femtosecond Pulses at the Boundary of a Nonlinear Dielectric,” Phys. Rev. Lett. |

23. | V. Roppo, M. Centini, C. Sibilia, M. Bertolotti, D. de Ceglia, M. Scalora, N. Akozbek, M. J. Bloemer, J. W. Haus, O. G. Kosareva, and V. P. Kandidov, “Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media,” Phys. Rev. A |

24. | E. Fazio, F. Pettazzi, M. Centini, M. Chauvet, A. Belardini, M. Alonzo, C. Sibilia, M. Bertolotti, and M. Scalora, “Complete spatial and temporal locking in phase-mismatched second-harmonic generation,” Opt. Express |

25. | J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express |

26. | J. Safioui, M. Chauvet, F. Devaux, V. Coda, F. Pettazzi, M. Alonzo, and E. Fazio, “Polarization and configuration dependence of beam self-focusing in photorefractive LiNbO |

27. | N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics |

28. | F. Pettazzi, V. Coda, G. Fanjoux, M. Chauvet, and E. Fazio, “Dynamic of second harmonic generation in photovoltaic photorefractive quadratic medium,” J. Opt. Soc. Am. B |

29. | E. Fazio, F. Pettazzi, M. Centini, M. Chauvet, A. Belardini, M. Alonzo, C. Sibilia, M. Bertolotti, and M. Scalora, “Complete spatial and temporal locking in phase-mismatched second-harmonic generation,” Opt. Express |

**OCIS Codes**

(190.0190) Nonlinear optics : Nonlinear optics

(190.2620) Nonlinear optics : Harmonic generation and mixing

(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

(190.7110) Nonlinear optics : Ultrafast nonlinear optics

(190.6135) Nonlinear optics : Spatial solitons

**ToC Category:**

Nonlinear Optics

**History**

Original Manuscript: February 3, 2010

Revised Manuscript: March 9, 2010

Manuscript Accepted: March 9, 2010

Published: March 31, 2010

**Citation**

Eugenio Fazio, Alessandro Belardini, Massimo Alonzo, Marco Centini, Mathieu Chauvet, Fabrice Devaux, and Michael Scalora, "Observation of photorefractive simultons in lithium niobate," Opt. Express **18**, 7972-7981 (2010)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7972

Sort: Year | Journal | Reset

### References

- R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of Optical beams,” Phys. Rev. Lett. 13(15), 479–482 (1964). [CrossRef]
- J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15(9), 471–473 (1990). [CrossRef] [PubMed]
- Y. N. Karamzin and A. P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Sov. Phys. JETP 41, 414–416 (1976).
- A. V. Buryak and Y. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19(20), 1612–1614 (1994). [CrossRef] [PubMed]
- C. R. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to χ2: χ2 cascading,” J. Opt. Soc. Am. B 11(12), 2434–2443 (1994). [CrossRef]
- W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995). [CrossRef] [PubMed]
- A. V. Buryak, Y. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52(2), 1670–1674 (1995). [CrossRef] [PubMed]
- G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993). [CrossRef] [PubMed]
- M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994). [CrossRef] [PubMed]
- E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004). [CrossRef]
- A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. anomalous dispersion,” Appl. Phys. Lett. 23(3), 142 (1973). [CrossRef]
- A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion,” Appl. Phys. Lett. 23(4), 171 (1973). [CrossRef]
- P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of Temporal Solitons in Second-Harmonic Generation with Tilted Pulses,” Phys. Rev. Lett. 81(3), 570–573 (1998). [CrossRef]
- X. Liu, L. J. Qian, and F. W. Wise, “Generation of spatio-temporal solitons,” Phys. Rev. Lett. 82(23), 4631–4634 (1999). [CrossRef]
- M. J. Werner and P. D. Drummond, “simulton solutions for the parametric amplifier,” J. Opt. Soc. Am. B 10(12), 2390–2393 (1993). [CrossRef]
- V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42(8), 463–465 (2006). [CrossRef]
- F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, “Frequency doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272(1), 238–241 (2007). [CrossRef]
- F. Pettazzi, M. Alonzo, M. Centini, A. Petris, V. I. Vlad, M. Chauvet, and E. Fazio, “Self-trapping of low-energy infrared femtosecond beams in lithium niobate,” Phys. Rev. A 76(6), 063818–063821 (2007). [CrossRef]
- F. Pettazzi, V. Coda, G. Fanjoux, M. Chauvet, and E. Fazio, “Dynamic of second harmonic generation in photovoltaic photorefractive quadratic medium,” J. Opt. Soc. Am. B 27(1), 1–9 (2010). [CrossRef]
- V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals. 2nd edition, (Springer).
- N. Bloembergen and P. S. Pershan, “Light Waves at the Boundary of Nonlinear Media,” Phys. Rev. 128(2), 606–622 (1962). [CrossRef]
- M. Mlejnek, E. M. Wright, J. V. Moloney, and N. Bloembergen, “Second Harmonic Generation of Femtosecond Pulses at the Boundary of a Nonlinear Dielectric,” Phys. Rev. Lett. 83(15), 2934–2937 (1999). [CrossRef]
- V. Roppo, M. Centini, C. Sibilia, M. Bertolotti, D. de Ceglia, M. Scalora, N. Akozbek, M. J. Bloemer, J. W. Haus, O. G. Kosareva, and V. P. Kandidov, “Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media,” Phys. Rev. A 76, 033829 (2007). [CrossRef]
- E. Fazio, F. Pettazzi, M. Centini, M. Chauvet, A. Belardini, M. Alonzo, C. Sibilia, M. Bertolotti, and M. Scalora, “Complete spatial and temporal locking in phase-mismatched second-harmonic generation,” Opt. Express 17(5), 3141–3147 (2009). [CrossRef] [PubMed]
- J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17(24), 22209–22216 (2009). [CrossRef] [PubMed]
- J. Safioui, M. Chauvet, F. Devaux, V. Coda, F. Pettazzi, M. Alonzo, and E. Fazio, “Polarization and configuration dependence of beam self-focusing in photorefractive LiNbO3,” J. Opt. Soc. Am. B 26(3), 487–492 (2009). [CrossRef]
- N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979). [CrossRef]
- F. Pettazzi, V. Coda, G. Fanjoux, M. Chauvet, and E. Fazio, “Dynamic of second harmonic generation in photovoltaic photorefractive quadratic medium,” J. Opt. Soc. Am. B 27(1), 1–9 (2010). [CrossRef]
- E. Fazio, F. Pettazzi, M. Centini, M. Chauvet, A. Belardini, M. Alonzo, C. Sibilia, M. Bertolotti, and M. Scalora, “Complete spatial and temporal locking in phase-mismatched second-harmonic generation,” Opt. Express 17(5), 3141–3147 (2009). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Multimedia

Multimedia Files | Recommended Software |

» Media 1: MPG (1416 KB) | QuickTime |

» Media 2: MPG (1302 KB) | QuickTime |

« Previous Article | Next Article »

OSA is a member of CrossRef.