OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9950–9955
« Show journal navigation

Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser

Xian-lei Li, Jin-long Xu, Yong-zhong Wu, Jing-liang He, and Xiao-peng Hao  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9950-9955 (2011)
http://dx.doi.org/10.1364/OE.19.009950


View Full Text Article

Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated that the graphene could be used as an effective saturable absorber for Q-switched solid-state lasers. A graphene saturable absorber mirror was fabricated with large and high-quality graphene sheets deprived from the liquid phase exfoliation. Using this mirror, 105-ns pulses and 2.3-W average output power are obtained from a passively Q-switched Nd:GdVO4 laser. The maximum pulse energy is 3.2 μJ. The slope efficiency is as high as 37% approximating to 40% of the continue-wave laser, indicating a low intrinsic loss of the graphene.

© 2011 OSA

1. Introduction

2. Preparation and characterization of graphene

In order to obtain graphene sheets with size of tens of microns, we pretreated worm-like exfoliated graphite (WEG) with oxidant before exfoliating. Exfoliated graphite was pre-oxidized in a mixture of concentrated sulphuric acid, potassium peroxodisulfate, phosphorus oxide (P2O5) at 90 °C under stirring. On the completion of 4 hours, the mixture was poured to a large beaker containing excessive de-ionized water, followed by filtration and washing until the pH of the filtrate was close to neutral. The as-obtained graphite was dried at 80 °C for 24 hours. The dried graphite was ultrasonicated in 1-methyl-2-pyrrolidinone (NMP) in a sealed glass vial for 2 hours. The resulting dispersion was left for 3 days to precipitate out any insoluble particles. The supernatant solution was collected for characterization. The scanning electron microscope (SEM) and high resolution transmission electron microscopy (HRTEM) were used to characterize the product. Graphene sheets with lateral size over 20 µm can be clearly seen in Fig. 1(a)
Fig. 1 (a) SEM images of graphene sheets. (b) HRTEM images of graphene sheets. (c) SEAD pattern shows the six-fold rotational symmetry (d) HRTEM image of graphene edge where fringes are observed and interlaminar spacing is 0.34-nm.
and 1(b). The selected area electron diffraction (SEAD) pattern in Fig. 1(c), shows the typical six-fold symmetry expected for graphite/graphene. The intensity of the pattern also suggests the area is a monolayer graphene due to the fact that the intensity ratio of I{1100}/I{2110} > 1 is a unique feature for monolayer graphene [18

18. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single-and bi-layer graphene membranes,” Solid State Commun. 143(1–2), 101–109 (2007). [CrossRef]

]. The edge-on image of graphene in Fig. 1(d) indicates an intergraphene spacing of 0.34 nm.

3. Results and discussion

The graphene sheets were directly spin-coated onto a plane BK7 glass reflector coated with SiO2/TiO2 dielectrical layers, which had a reflectivity of ~95% with a broad band as in Fig. 2(a)
Fig. 2 (a) Transmissivity spectra of the BK7 substrate and graphene SAM. (b) Experimental setup of the Q-switched laser. (c) Average output power versus incident pump power for continuous-wave and Q-switching (Q-S) operation. (d) Pulse width and repetition rate versus incident pump power for Q-switching operation.
. The transmission of the graphene SAM is measured at different locations. The curves of maximum and minimum values are given in Fig. 2(a), respectively. The transmission of the graphene SAM can be described as
T=To(1α)n
where To, α, and n are the initial transmission of the substrate, the absorption of the monolayer graphene, and the number of the coated graphene layers, respectively. The measured transmission is between ~95.2% and 96.1% at 1063 nm. Thus it can be concluded that the layers of the coated graphene range from 2 to 10.

The schematic arrangement of the Q-switched laser is shown in Fig. 2(b). A 17-mm-long two-mirror resonator was used to evaluate the performance of the graphene SAM. The gain medium was a 3 × 3 × 5 mm3 a-cut Nd:GdVO4 with the Nd3+ doping level of 0.5 at.%. To remove the stored heat, we wrapped the crystal with indium foil and mounted it in a copper heat sink with the temperature kept at 21°C by water cooling. The crystal was end-pumped by a fiber-coupled laser diode array emitting at 808 nm with 400 μm in diameter and 0.22 in numerical aperture. The input coupler was a concave mirror with a curvature radius of 200 mm. It was antireflection coated at 808 nm and high-reflection coated at 1063 nm.

Initially, we investigated the performance of the continuous-wave (CW) Nd:GdVO4 laser with a BK7 reflector (the same as the substrate of the graphene SAM) as output coupler. The laser operation was realized at the threshold pump power of 0.18 W. The output power is plotted in Fig. 2(c) as a function of the incident pump power (P in). 2.5-W output power was obtained under the incident pump power of 6.5 W, resulting in an optical-to-optical efficiency of 38% and a slope efficiency of 40%. No self Q-switching was observed during the experiment. The laser emission centered at 1063 nm with a full width at half maximum (FWHM) of ~0.8 nm. These results revealed the good laser properties of our Nd:GdVO4.

4. Conclusion

In this article, the efficient performance of the graphene SAM on the Q-switched solid-state lasers has been demonstrated. 2.3 W of average output power and 3.2 μJ of pulse energy are obtained. Our results show that graphene can be applied to generate high-energy stable pulses at a repetition rate in the tens to hundreds kHz range.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11074148, 50823009, and 51021062) and National Basic Research Program of China (2009CB930503), the Key Project of Chinese Ministry of Education (No. 109096).

References and links

1.

B. Braun, F. X. Kärtner, U. Keller, J. P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LaSc(3)(BO(3))(4) microchip laser,” Opt. Lett. 21(6), 405–407 (1996). [CrossRef] [PubMed]

2.

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997). [CrossRef] [PubMed]

3.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72(25), 3273 (1998). [CrossRef]

4.

G. J. Spühler, S. Reffert, M. Haiml, M. Moser, and U. Keller, “Output-coupling semiconductor saturable absorber mirror,” Appl. Phys. Lett. 78(18), 2733 (2001). [CrossRef]

5.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003). [CrossRef] [PubMed]

6.

P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008). [CrossRef]

7.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008). [CrossRef]

8.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]

9.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008). [CrossRef] [PubMed]

10.

J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27(9), 2220–2225 (1991). [CrossRef]

11.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef] [PubMed]

12.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009). [CrossRef]

13.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interacton,” Appl. Phys. Lett. 96(5), 051122 (2010). [CrossRef]

14.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. L. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010). [CrossRef] [PubMed]

15.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010). [CrossRef]

16.

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Z. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ACS Nano 4(12), 7582–7586 (2010). [CrossRef] [PubMed]

17.

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011). [CrossRef]

18.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single-and bi-layer graphene membranes,” Solid State Commun. 143(1–2), 101–109 (2007). [CrossRef]

19.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58(5), 373–379 (1994). [CrossRef]

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.4330) Materials : Nonlinear optical materials
(230.4170) Optical devices : Multilayers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 28, 2011
Revised Manuscript: April 29, 2011
Manuscript Accepted: May 4, 2011
Published: May 5, 2011

Citation
Xian-lei Li, Jin-long Xu, Yong-zhong Wu, Jing-liang He, and Xiao-peng Hao, "Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser," Opt. Express 19, 9950-9955 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9950


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Braun, F. X. Kärtner, U. Keller, J. P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LaSc(3)(BO(3))(4) microchip laser,” Opt. Lett. 21(6), 405–407 (1996). [CrossRef] [PubMed]
  2. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997). [CrossRef] [PubMed]
  3. R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72(25), 3273 (1998). [CrossRef]
  4. G. J. Spühler, S. Reffert, M. Haiml, M. Moser, and U. Keller, “Output-coupling semiconductor saturable absorber mirror,” Appl. Phys. Lett. 78(18), 2733 (2001). [CrossRef]
  5. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003). [CrossRef] [PubMed]
  6. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008). [CrossRef]
  7. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008). [CrossRef]
  8. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]
  9. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008). [CrossRef] [PubMed]
  10. J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27(9), 2220–2225 (1991). [CrossRef]
  11. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef] [PubMed]
  12. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009). [CrossRef]
  13. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interacton,” Appl. Phys. Lett. 96(5), 051122 (2010). [CrossRef]
  14. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. L. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010). [CrossRef] [PubMed]
  15. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010). [CrossRef]
  16. H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Z. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ACS Nano 4(12), 7582–7586 (2010). [CrossRef] [PubMed]
  17. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011). [CrossRef]
  18. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, “On the roughness of single-and bi-layer graphene membranes,” Solid State Commun. 143(1–2), 101–109 (2007). [CrossRef]
  19. T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58(5), 373–379 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited