A blind robust watermarking scheme with non-cascade iterative encrypted kinoform |
Optics Express, Vol. 19, Issue 11, pp. 10241-10251 (2011)
http://dx.doi.org/10.1364/OE.19.010241
Acrobat PDF (1505 KB)
Abstract
A blind robust watermarking scheme is proposed. A watermark is firstly transformed into a non-cascade iterative encrypted kinoform with non-cascade phase retrieve algorithm and random fractional Fourier transform (RFrFT). An iterative algorithm and Human Visual System (HVS) are both presented to adaptively embed the kinoform watermark into corresponding 2-level DWT coefficients of the cover image. The kinoform accounts for much less data amount to be embedded than regular computer-generated hologram (CGH). And the kinoform can be extracted with the only right phase key and right fractional order, and reconstructed to represent original watermark without original cover image. The experiments have shown the scheme’s high security, good imperceptibility, and robustness to resist attacks such as noise, compression, filtering, cropping.
© 2011 OSA
1. Introduction
20. P. Bao, “Xiaohu Ma, “Image adaptive watermarking using wavelet domain singular value decomposition,” IEEE Trans. Circ. Syst. Video Tech. 15, 96–102 (2005). [CrossRef]
22. N. Bi, Q. Sun, D. Huang, Z. Yang, and J. Huang, “Robust image watermarking based on multiband wavelets and empirical mode decomposition,” IEEE Trans. Image Process. 16(8), 1956–1966 (2007). [CrossRef] [PubMed]
7. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995). [CrossRef] [PubMed]
9. Y. Sheng, Z. Xin, M. S. Alam, L. Xi, and L. Xiao-Feng, “Information hiding based on double random-phase encoding and public-key cryptography,” Opt. Express 17(5), 3270–3284 (2009). [CrossRef] [PubMed]
13. C. Candan, M. A. Kutay, and H. M. Ozaktas, “The discrete fractional Fourier transform,” IEEE Trans. Signal Process. 48(5), 1329–1337 (2000). [CrossRef]
10. R. Tao, Y. Xin, and Y. Wang, “Double image encryption based on random phase encoding in the fractional Fourier domain,” Opt. Express 15(24), 16067–16079 (2007). [CrossRef] [PubMed]
12. S. Deng, L. Liu, H. Lang, D. Zhao, and X. Liu, “Watermarks encrypted in the cascaded Fresnel digital hologram,” Optik (Stuttg.) 118, 302–305 (2007). [CrossRef]
1. M. He, Q. Tan, L. Cao, Q. He, and G. Jin, “Security enhanced optical encryption system by random phase key and permutation key,” Opt. Express 17(25), 22462–22473 (2009). [CrossRef]
2. N. Takai and Y. Mifune, “Digital watermarking by a holographic technique,” Appl. Opt. 41(5), 865–873 (2002). [CrossRef] [PubMed]
22. N. Bi, Q. Sun, D. Huang, Z. Yang, and J. Huang, “Robust image watermarking based on multiband wavelets and empirical mode decomposition,” IEEE Trans. Image Process. 16(8), 1956–1966 (2007). [CrossRef] [PubMed]
14. S.-C. Pei and W.-L. Hsue, “Random discrete fractional Fourier transform,” IEEE Signal Process. Lett. 16(12), 1015–1018 (2009). [CrossRef]
16. Z. Liu and S. Liu, “Random fractional Fourier transform,” Opt. Lett. 32(15), 2088–2090 (2007). [CrossRef] [PubMed]
6. H. Zhai, F. Liu, X. Yang, G. Mu, and P. Chavel, “Improving binary images reconstructed from kinoforms by amplitude adjustment,” Opt. Commun. 219(1-6), 81–85 (2003). [CrossRef]
17. J. Li, X. Zhang, S. Liu, and X. Ren, “Adaptive watermarking scheme using a gray-level computer generated hologram,” Appl. Opt. 48(26), 4858–4865 (2009). [CrossRef] [PubMed]
18. M. Barni, F. Bartolini, and A. Piva, “Improved wavelet-based watermarking through pixel-wise masking,” IEEE Trans. Image Process. 10(5), 783–791 (2001). [CrossRef]
2. Non-cascade iterative encrypted kinoform
2.1 Random fractional Fourier transform (RFrFT)
13. C. Candan, M. A. Kutay, and H. M. Ozaktas, “The discrete fractional Fourier transform,” IEEE Trans. Signal Process. 48(5), 1329–1337 (2000). [CrossRef]
16. Z. Liu and S. Liu, “Random fractional Fourier transform,” Opt. Lett. 32(15), 2088–2090 (2007). [CrossRef] [PubMed]
2.2 Kinoform watermark generation
3. Watermarking embedding
18. M. Barni, F. Bartolini, and A. Piva, “Improved wavelet-based watermarking through pixel-wise masking,” IEEE Trans. Image Process. 10(5), 783–791 (2001). [CrossRef]
19. A. Reddy and B. Chatterji, “A new wavelet based logo-watermarking scheme,” Pattern Recognit. Lett. 26(7), 1019–1027 (2005). [CrossRef]
18. M. Barni, F. Bartolini, and A. Piva, “Improved wavelet-based watermarking through pixel-wise masking,” IEEE Trans. Image Process. 10(5), 783–791 (2001). [CrossRef]
17. J. Li, X. Zhang, S. Liu, and X. Ren, “Adaptive watermarking scheme using a gray-level computer generated hologram,” Appl. Opt. 48(26), 4858–4865 (2009). [CrossRef] [PubMed]
4. Watermarking extraction and reconstruction
5. Numerical simulations and analysis
5.1 Judgment principle
5.2 Numerical simulations
5.2.1 Non-cascade encrypted kinoform generation
5.2.2 Convergence tests
5.2.3 Security tests
5.2.4 Attack tests
6. Conclusion
References and links
1. | M. He, Q. Tan, L. Cao, Q. He, and G. Jin, “Security enhanced optical encryption system by random phase key and permutation key,” Opt. Express 17(25), 22462–22473 (2009). [CrossRef] |
2. | N. Takai and Y. Mifune, “Digital watermarking by a holographic technique,” Appl. Opt. 41(5), 865–873 (2002). [CrossRef] [PubMed] |
3. | Y. Aoki, “Watermarking technique using computer-generated holograms,” Electron. Commun. Jpn. 84(1), 21–31 (2001). [CrossRef] |
4. | M. Liu, G. Yang, H. Xie, M. Xia, J. Hu, and H. Zha, “Computer-generated hologram watermarking resilient to rotation and scaling,” Opt. Eng. 46(6), 060501 (2007). [CrossRef] |
5. | K. Deng, G. Yang, and C. Zhang, “Burch computer-generated hologram watermarking resilient to strong cropping attack,” Biomedical Optics and 3-D Imaging (BIOMED) Topical Meeting, OSA Optics and Photonics Congress, April 2010, in Miami, FL, USA. |
6. | H. Zhai, F. Liu, X. Yang, G. Mu, and P. Chavel, “Improving binary images reconstructed from kinoforms by amplitude adjustment,” Opt. Commun. 219(1-6), 81–85 (2003). [CrossRef] |
7. | P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995). [CrossRef] [PubMed] |
8. | S. Kishk and B. Javidi, “Information hiding technique with double phase encoding,” Appl. Opt. 41(26), 5462–5470 (2002). [CrossRef] [PubMed] |
9. | Y. Sheng, Z. Xin, M. S. Alam, L. Xi, and L. Xiao-Feng, “Information hiding based on double random-phase encoding and public-key cryptography,” Opt. Express 17(5), 3270–3284 (2009). [CrossRef] [PubMed] |
10. | R. Tao, Y. Xin, and Y. Wang, “Double image encryption based on random phase encoding in the fractional Fourier domain,” Opt. Express 15(24), 16067–16079 (2007). [CrossRef] [PubMed] |
11. | S. Deng, L. Liu, H. Lang, W. Pan, and D. Zhao, “Hiding an image in cascaded Fresnel digital holograms,” Chin. Opt. Lett. 4, 268–271 (2006). |
12. | S. Deng, L. Liu, H. Lang, D. Zhao, and X. Liu, “Watermarks encrypted in the cascaded Fresnel digital hologram,” Optik (Stuttg.) 118, 302–305 (2007). [CrossRef] |
13. | C. Candan, M. A. Kutay, and H. M. Ozaktas, “The discrete fractional Fourier transform,” IEEE Trans. Signal Process. 48(5), 1329–1337 (2000). [CrossRef] |
14. | S.-C. Pei and W.-L. Hsue, “Random discrete fractional Fourier transform,” IEEE Signal Process. Lett. 16(12), 1015–1018 (2009). [CrossRef] |
15. | S.-C. Pei and W.-L. Hsue, “The multiple-parameter discrete fractional Fourier transform,” IEEE Signal Process. Lett. 13(6), 329–332 (2006). [CrossRef] |
16. | Z. Liu and S. Liu, “Random fractional Fourier transform,” Opt. Lett. 32(15), 2088–2090 (2007). [CrossRef] [PubMed] |
17. | J. Li, X. Zhang, S. Liu, and X. Ren, “Adaptive watermarking scheme using a gray-level computer generated hologram,” Appl. Opt. 48(26), 4858–4865 (2009). [CrossRef] [PubMed] |
18. | M. Barni, F. Bartolini, and A. Piva, “Improved wavelet-based watermarking through pixel-wise masking,” IEEE Trans. Image Process. 10(5), 783–791 (2001). [CrossRef] |
19. | A. Reddy and B. Chatterji, “A new wavelet based logo-watermarking scheme,” Pattern Recognit. Lett. 26(7), 1019–1027 (2005). [CrossRef] |
20. | P. Bao, “Xiaohu Ma, “Image adaptive watermarking using wavelet domain singular value decomposition,” IEEE Trans. Circ. Syst. Video Tech. 15, 96–102 (2005). [CrossRef] |
21. | W.-H. Lin, S.-J. Horng, T.-W. Kao, P. Fan, C.-L. Lee, and Y. Pan, “An efficient watermarking method based on significant difference of wavelet coefficient quantization,” IEEE Trans. Multimed. 10(5), 746–757 (2008). [CrossRef] |
22. | N. Bi, Q. Sun, D. Huang, Z. Yang, and J. Huang, “Robust image watermarking based on multiband wavelets and empirical mode decomposition,” IEEE Trans. Image Process. 16(8), 1956–1966 (2007). [CrossRef] [PubMed] |
OCIS Codes
(090.1760) Holography : Computer holography
(100.2000) Image processing : Digital image processing
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms
(060.4785) Fiber optics and optical communications : Optical security and encryption
ToC Category:
Image Processing
History
Original Manuscript: October 11, 2010
Revised Manuscript: March 4, 2011
Manuscript Accepted: May 9, 2011
Published: May 10, 2011
Citation
Ke Deng, Guanglin Yang, and Haiyan Xie, "A blind robust watermarking scheme with non-cascade iterative encrypted kinoform," Opt. Express 19, 10241-10251 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10241
Sort: Year | Journal | Reset
References
- M. He, Q. Tan, L. Cao, Q. He, and G. Jin, “Security enhanced optical encryption system by random phase key and permutation key,” Opt. Express 17(25), 22462–22473 (2009). [CrossRef]
- N. Takai and Y. Mifune, “Digital watermarking by a holographic technique,” Appl. Opt. 41(5), 865–873 (2002). [CrossRef] [PubMed]
- Y. Aoki, “Watermarking technique using computer-generated holograms,” Electron. Commun. Jpn. 84(1), 21–31 (2001). [CrossRef]
- M. Liu, G. Yang, H. Xie, M. Xia, J. Hu, and H. Zha, “Computer-generated hologram watermarking resilient to rotation and scaling,” Opt. Eng. 46(6), 060501 (2007). [CrossRef]
- K. Deng, G. Yang, and C. Zhang, “Burch computer-generated hologram watermarking resilient to strong cropping attack,” Biomedical Optics and 3-D Imaging (BIOMED) Topical Meeting, OSA Optics and Photonics Congress, April 2010, in Miami, FL, USA.
- H. Zhai, F. Liu, X. Yang, G. Mu, and P. Chavel, “Improving binary images reconstructed from kinoforms by amplitude adjustment,” Opt. Commun. 219(1-6), 81–85 (2003). [CrossRef]
- P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995). [CrossRef] [PubMed]
- S. Kishk and B. Javidi, “Information hiding technique with double phase encoding,” Appl. Opt. 41(26), 5462–5470 (2002). [CrossRef] [PubMed]
- Y. Sheng, Z. Xin, M. S. Alam, L. Xi, and L. Xiao-Feng, “Information hiding based on double random-phase encoding and public-key cryptography,” Opt. Express 17(5), 3270–3284 (2009). [CrossRef] [PubMed]
- R. Tao, Y. Xin, and Y. Wang, “Double image encryption based on random phase encoding in the fractional Fourier domain,” Opt. Express 15(24), 16067–16079 (2007). [CrossRef] [PubMed]
- S. Deng, L. Liu, H. Lang, W. Pan, and D. Zhao, “Hiding an image in cascaded Fresnel digital holograms,” Chin. Opt. Lett. 4, 268–271 (2006).
- S. Deng, L. Liu, H. Lang, D. Zhao, and X. Liu, “Watermarks encrypted in the cascaded Fresnel digital hologram,” Optik (Stuttg.) 118, 302–305 (2007). [CrossRef]
- C. Candan, M. A. Kutay, and H. M. Ozaktas, “The discrete fractional Fourier transform,” IEEE Trans. Signal Process. 48(5), 1329–1337 (2000). [CrossRef]
- S.-C. Pei and W.-L. Hsue, “Random discrete fractional Fourier transform,” IEEE Signal Process. Lett. 16(12), 1015–1018 (2009). [CrossRef]
- S.-C. Pei and W.-L. Hsue, “The multiple-parameter discrete fractional Fourier transform,” IEEE Signal Process. Lett. 13(6), 329–332 (2006). [CrossRef]
- Z. Liu and S. Liu, “Random fractional Fourier transform,” Opt. Lett. 32(15), 2088–2090 (2007). [CrossRef] [PubMed]
- J. Li, X. Zhang, S. Liu, and X. Ren, “Adaptive watermarking scheme using a gray-level computer generated hologram,” Appl. Opt. 48(26), 4858–4865 (2009). [CrossRef] [PubMed]
- M. Barni, F. Bartolini, and A. Piva, “Improved wavelet-based watermarking through pixel-wise masking,” IEEE Trans. Image Process. 10(5), 783–791 (2001). [CrossRef]
- A. Reddy and B. Chatterji, “A new wavelet based logo-watermarking scheme,” Pattern Recognit. Lett. 26(7), 1019–1027 (2005). [CrossRef]
- P. Bao, “Xiaohu Ma, “Image adaptive watermarking using wavelet domain singular value decomposition,” IEEE Trans. Circ. Syst. Video Tech. 15, 96–102 (2005). [CrossRef]
- W.-H. Lin, S.-J. Horng, T.-W. Kao, P. Fan, C.-L. Lee, and Y. Pan, “An efficient watermarking method based on significant difference of wavelet coefficient quantization,” IEEE Trans. Multimed. 10(5), 746–757 (2008). [CrossRef]
- N. Bi, Q. Sun, D. Huang, Z. Yang, and J. Huang, “Robust image watermarking based on multiband wavelets and empirical mode decomposition,” IEEE Trans. Image Process. 16(8), 1956–1966 (2007). [CrossRef] [PubMed]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
Figures
Fig. 1 | Fig. 2 | Fig. 3 |
Fig. 4 | Fig. 5 | Fig. 6 |
Fig. 7 | Fig. 8 | Fig. 9 |
Fig. 11 | Fig. 10 | Fig. 12 |
Fig. 13 | Fig. 14 | |
« Previous Article | Next Article »
OSA is a member of CrossRef.