## Numerical study of color holographic projection using space-division method |

Optics Express, Vol. 19, Issue 11, pp. 10287-10292 (2011)

http://dx.doi.org/10.1364/OE.19.010287

Acrobat PDF (1114 KB)

### Abstract

We propose a color holographic projection using the space-division method, which can reconstruct a two-dimensional color image by one hologram and avoid the superimposing of unwanted images on a wanted image. We calculated three holograms corresponding to red, green and blue, and then generated one hologram to add the three holograms. The three holograms were optimized by the Gerchberg-Saxton algorithm for improvement of reconstructed color images. We numerically evaluated the image quality of color reconstructed images in terms of the color space of YCbCr, and compared the quality of color reconstructed images by the space-division method with that of reconstructed color images using another color holographic projection method.

© 2011 OSA

## 1. Introduction

2. E. Buckley, “Holographic projector using one lens,” Opt. Lett. **35**, 3399–3401 (2010). [CrossRef] [PubMed]

3. K. Sato, “Animated color 3D image using kinoforms by liquid crystal devices,” J. Inst. Telev. Eng. Jpn. **48**, 1261 (1994). [CrossRef]

4. T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing method with reference lights of laser,” Opt. Rev. **10**, 339–341 (2003). [CrossRef]

8. M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express **16**, 11618–11623 (2008). [PubMed]

9. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express **17**, 20840–20846 (2009). [CrossRef] [PubMed]

12. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express **12**, 4320–4325 (2004). [CrossRef] [PubMed]

8. M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express **16**, 11618–11623 (2008). [PubMed]

9. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express **17**, 20840–20846 (2009). [CrossRef] [PubMed]

10. M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. **44**, 125805 (2005). [CrossRef]

11. M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng. **46**, 045802 (2007). [CrossRef]

12. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express **12**, 4320–4325 (2004). [CrossRef] [PubMed]

9. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express **17**, 20840–20846 (2009). [CrossRef] [PubMed]

3. K. Sato, “Animated color 3D image using kinoforms by liquid crystal devices,” J. Inst. Telev. Eng. Jpn. **48**, 1261 (1994). [CrossRef]

13. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. **21**, 2758–2769 (1982). [CrossRef] [PubMed]

14. R. G. Dorsch, A. W. Lohmann, and S. Sinzinger, “Fresnel ping-pong algorithm for two-plane computer-generated hologram display,” Appl. Opt. **33**, 869–875 (1994). [CrossRef] [PubMed]

## 2. Color holographic projection with the space-division method

16. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express **15**, 5631–5640 (2007). [CrossRef] [PubMed]

13. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. **21**, 2758–2769 (1982). [CrossRef] [PubMed]

14. R. G. Dorsch, A. W. Lohmann, and S. Sinzinger, “Fresnel ping-pong algorithm for two-plane computer-generated hologram display,” Appl. Opt. **33**, 869–875 (1994). [CrossRef] [PubMed]

15. T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A, Pure Appl. Opt. **10**, 075308, 5pp (2008). [CrossRef]

## 3. Results

*μm*× 8.0

*μm*. We use RGB reference lights whose wavelengths are 633 nm for red, 532 nm for green, and 470 nm for blue, respectively. The kinoform size is 2,048 × 2,048 pixels.

*z*×

*λ*

_{1}/

*λ*

_{2}, where

*z*is reconstruction distance of the wanted image,

*λ*

_{1}is wavelength for reconstruction and

*λ*

_{2}is wavelength for recording. We obtain the wanted color image at 0.2 m by simultaneously illuminating the RGB reference lights to the final kinoform. Figures 5(a), 5(c), and 5(e) show reconstructed wanted images by DMM.

*z*= 0.2 m from a kinoform, and each component is set at

*d*= 0.01 m transversely. We obtain a wanted color image at 0.2 m by simultaneously illuminating the RGB reference lights to the final kinoform. The incident angle

*θ*of the red and green reference lights is 2.93°. Figures 5 (b), 5(d), and 5(f) show reconstructed wanted images by SDM.

*M*and

*N*are the horizontal and vertical number of pixels for a reconstructed image and original image,

*I*

*and*

_{o}*I*

*are original and reconstructed images, respectively. In the graph, solid lines indicate PSNRs of SDM and dotted lines indicate PSNRs of DMM. The PSNR almost converges at 30 iterations. Both PSNRs of luminance for SDM and DMM are small values, whereas, PSNRs of Cb and Cr for SDM and DMM are over 20 (dB) at 30 iterations. Moreover, all PSNRs of SDM are better than that of DMM.*

_{r}## 4. Conclusion

## Acknowledgments

## References and links

1. | E. Buckley, “Holographic laser projection,” J. Disp. Technol. |

2. | E. Buckley, “Holographic projector using one lens,” Opt. Lett. |

3. | K. Sato, “Animated color 3D image using kinoforms by liquid crystal devices,” J. Inst. Telev. Eng. Jpn. |

4. | T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing method with reference lights of laser,” Opt. Rev. |

5. | T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A, Pure Appl. Opt. |

6. | T. Shimobaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” IEICE Electron. Express |

7. | M. Oikawa, T. Yoda, T. Shimobaba, N. Masuda, and T. Ito, “Time-division color electroholography with low-price microprocessor,” Digital Holography and Three Dimensional Imaging (DH2011) (in print). |

8. | M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express |

9. | M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express |

10. | M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. |

11. | M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng. |

12. | T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express |

13. | J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. |

14. | R. G. Dorsch, A. W. Lohmann, and S. Sinzinger, “Fresnel ping-pong algorithm for two-plane computer-generated hologram display,” Appl. Opt. |

15. | T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A, Pure Appl. Opt. |

16. | R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express |

**OCIS Codes**

(090.1760) Holography : Computer holography

(090.2870) Holography : Holographic display

(100.5070) Image processing : Phase retrieval

(090.1705) Holography : Color holography

**ToC Category:**

Holography

**History**

Original Manuscript: March 4, 2011

Revised Manuscript: March 29, 2011

Manuscript Accepted: April 3, 2011

Published: May 10, 2011

**Citation**

Tomoyoshi Shimobaba, Takayuki Takahashi, Nobuyuki Masuda, and Tomoyoshi Ito, "Numerical study of color holographic projection using space-division method," Opt. Express **19**, 10287-10292 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10287

Sort: Year | Journal | Reset

### References

- E. Buckley, “Holographic laser projection,” J. Disp. Technol. 99, 1–6 (2010).
- E. Buckley, “Holographic projector using one lens,” Opt. Lett. 35, 3399–3401 (2010). [CrossRef] [PubMed]
- K. Sato, “Animated color 3D image using kinoforms by liquid crystal devices,” J. Inst. Telev. Eng. Jpn. 48, 1261 (1994). [CrossRef]
- T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing method with reference lights of laser,” Opt. Rev. 10, 339–341 (2003). [CrossRef]
- T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A, Pure Appl. Opt. 9, 757–760 (2007). [CrossRef]
- T. Shimobaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” IEICE Electron. Express 5, 271–277 (2008). [CrossRef]
- M. Oikawa, T. Yoda, T. Shimobaba, N. Masuda, and T. Ito, “Time-division color electroholography with low-price microprocessor,” Digital Holography and Three Dimensional Imaging (DH2011) (in print).
- M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16, 11618–11623 (2008). [PubMed]
- M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express 17, 20840–20846 (2009). [CrossRef] [PubMed]
- M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005). [CrossRef]
- M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multiplane holograms: experiments and applications,” Opt. Eng. 46, 045802 (2007). [CrossRef]
- T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–4325 (2004). [CrossRef] [PubMed]
- J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
- R. G. Dorsch, A. W. Lohmann, and S. Sinzinger, “Fresnel ping-pong algorithm for two-plane computer-generated hologram display,” Appl. Opt. 33, 869–875 (1994). [CrossRef] [PubMed]
- T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A, Pure Appl. Opt. 10, 075308, 5pp (2008). [CrossRef]
- R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express 15, 5631–5640 (2007). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.