OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10336–10350
« Show journal navigation

Space-time block code based MIMO encoding for large core step index plastic optical fiber transmission systems

Nikos Raptis, Evangelos Grivas, Evangelos Pikasis, and Dimitris Syvridis  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10336-10350 (2011)
http://dx.doi.org/10.1364/OE.19.010336


View Full Text Article

Acrobat PDF (1170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of Space-Time Block Codes combined with Discrete MultiTone modulation applied in a Large Core Step-Index POF link is examined theoretically. A comparative study is performed considering several schemes that employ multiple transmitters/receivers and a fiber span of 100 m. The performance enhancement of the higher diversity order configurations is revealed by application of a Margin Adaptive Bit Loading technique that employs Chow’s algorithm. Simulations results of the above schemes, in terms of Bit Error Rate as a function of the received Signal to Noise Ratio, are provided. An improvement of more than 6 dB for the required electrical SNR is observed for a 3 × 1 configuration, in order to achieve a 10−3 BER value, as compared to a conventional Single Input Single output scheme.

© 2011 OSA

1. Introduction

  • Diversity is related to the emission of a number of replicas of the same signal, each suffering independent fading. The probability that the replicas fade severely and simultaneously is significantly reduced. Different diversity schemes can be realized in space, time or frequency domain.
  • Spatial multiplexing is the ability to transmit simultaneously different information over multiple sources, increasing this way the system capacity. A rule of thumb is that if N transmitters and M receivers exist in a MIMO system, then, for a rich scattering environment, the capacity will grow proportionally with min(N, M). Practically, all reported results in the literature, related to MIMO over MMF links fall within the “Spatial Multiplexing” technique [7

    7. H. P. A. van den Boom, A. M. J. Koonen, F. M. Huijskens, and W. van Gils, “Angular mode group diversity multiplexing for multi-channel communication in a single step-index plastic optical fibre,” presented at the Symposium IEEE/LEOS Benelux Chapter, Mons, Belgium, 2005.

    12

    12. M. Greenberg, M. Nazarathy, and M. Orenstein, “Data parallelization by optical MIMO transmission over multimode fiber with intermodal coupling,” J. Lightwave Technol. 25(6), 1503–1514 (2007). [CrossRef]

    ], though some results in [12

    12. M. Greenberg, M. Nazarathy, and M. Orenstein, “Data parallelization by optical MIMO transmission over multimode fiber with intermodal coupling,” J. Lightwave Technol. 25(6), 1503–1514 (2007). [CrossRef]

    ] concern diversity. The most common realization of spatial multiplexing is the Mode Group Diversity Multiplexing (MGDM), where different signals are transmitted on different mode groups, by selective excitation of the MMF [13

    13. J. Siuzdak, L. Maksymiuk, and G. Stepniak, “A 2 and 3 channel mode group diversity multiplexing transmission over graded and step index multimode fibers,” in Proceedings of 34th European Conference on Optical Communication, Brussels, Belgium, 21–25 Sept., 2008.

    ].

In this paper, we focus on the diversity techniques and present calculations showing the potential of application of Space-Time Block Codes (STBCs) in combination with DMT for the performance enhancement of transmission systems over large core SI-POF. STBCs are transmission schemes that maximize diversity rather than capacity and are optimized for frequency flat fading channels. In terms of multipath, the large core SI-POF is a frequency selective channel. By using DMT in such a channel, each subcarrier can be considered a frequency flat fading channel and the application of STBCs for every subcarrier seems to be an ideal case. We evaluate, through detailed numerical simulations, different diversity configurations based on Multiple-Input Single-Output (MISO) and MIMO schemes assuming transmission over 100 m of large core SI-POFs with a core diameter of 980 μm. The paper is organized as follows. At first, the optical channel is described and the impulse response of the SI-POF is given. Then, STBC schemes are briefly described and their combination with DMT is examined. Afterwards, the MISO channel is presented and detailed simulation results are presented for different MISO and MIMO configurations. A Margin Adaptive (MA) version of the bit loading technique has been also considered.

2. Optical channel - fiber model

A SI-POF with 490 μm core radius, 10 μm cladding thickness and length equal to 100 m is considered. The above length is longer than the coupling length (Lc) and the length (zs, with zs > Lc) over which a Steady State Distribution (SSD) has been achieved, meaning that the output light distribution is independent from launch conditions [14

14. A. Djordjevich and S. Savović, “Numerical solution of the power flow equation in step-index plastic optical fibers,” J. Opt. Soc. Am. B 21(8), 1437–1442 (2004). [CrossRef]

]. In the following, the core refractive index, the fiber attenuation and the Numerical Aperture (NA) are equal to 1.4893, 0.16 dB/m (at λ = 650 nm) and 0.5, respectively.

Many research groups have studied the frequency and/or the impulse response of SI-POFs [15

15. J. Mateo, M. A. Losada, and J. Zubia, “Frequency response in step index plastic optical fibers obtained from the generalized power flow equation,” Opt. Express 17(4), 2850–2860 (2009). [CrossRef] [PubMed]

17

17. B. Drljača, S. Savović, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time-dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

]. Despite the different methodologies followed, the common starting point of these approaches is the time-dependent power flow equation presented by Gloge [18

18. D. Gloge, “Impulse response of clad optical multimode fibers,” Bell Syst. Tech. J. 52, 801–816 (1973).

]. All these approaches result in resembling but slightly different impulse response shapes, depending on the methodology applied and the specific fiber used. According to [15

15. J. Mateo, M. A. Losada, and J. Zubia, “Frequency response in step index plastic optical fibers obtained from the generalized power flow equation,” Opt. Express 17(4), 2850–2860 (2009). [CrossRef] [PubMed]

], the impulse response, obtained from the integral of the fiber output intensity over output angle, represents the pulse temporal spread. This means that the impulse response is a (real) function of power and depends on the fiber length. Here, the impulse response is the one presented in [17

17. B. Drljača, S. Savović, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time-dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

] and [18

18. D. Gloge, “Impulse response of clad optical multimode fibers,” Bell Syst. Tech. J. 52, 801–816 (1973).

]. More specifically, the impulse response is given by the following formula as a function of the fiber length (z) and time (t)
h(z,t)=Θ2πTt(tγzT+12)1exp(γ2z2T4ttT),
(1)
where γ is the minimum overall loss coefficient, Θ is the steady state divergence angle of the optical output beam (angular power distribution) at the end of the fiber when the fiber is infinitely long with Θ = (4D/γ )1/2, T is equal to n)2 /(2 ), with D the constant coupling coefficient of the fiber that has rad2/m dimensions, n is the refractive index of the core of the fiber and c is the velocity of light in the vacuum (3 × 108 m/s).

The amplitude of the frequency response of the SI-POF drops steeply with frequency increase (Fig. 1(a)) and the bandwidth left for transmission is much less than that required for Gbit/s transmission, if a typical baseband NRZ-OOK modulation format is applied. DMT [19

19. S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation [Invited],” J. Opt. Netw. 7(2), 183–196 (2008). [CrossRef]

] seems to be a solution to these two problems. At first, a Cyclic Prefix (CP) with the proper duration is used for each real DMT symbol to overcome Inter-Symbol Interference (ISI). Theoretically, if the CP has a duration equal to or greater than the maximum Differential Mode Delay (DMD), then the ISI disappears. Secondly, DMT is a bandwidth-efficient modulation technique.

The degree of the temporal variation of the impulse response properties of the complete fiber span is of paramount importance for the system performance calculations, assuming that SSD has been achieved. Let the number of modes of the SI-POF be Mf, the number of modes that are received by the detector Md [12

12. M. Greenberg, M. Nazarathy, and M. Orenstein, “Data parallelization by optical MIMO transmission over multimode fiber with intermodal coupling,” J. Lightwave Technol. 25(6), 1503–1514 (2007). [CrossRef]

], the core surface of the fiber Af, the surface of the detector Ad, the overall integrated intensity at the fiber output Wf and the integrated intensity observed by the detector Wd. From [1

1. E. Grivas, N. Raptis, and D. Syvridis, “An optical mode filtering technique for the improvement of the large core SI-POF link performance,” J. Lightwave Technol. 28(12), 1796–1801 (2010). [CrossRef]

], Mf = 2.802.048. The detector is considered circular with radius r. From expression (11) of [20

20. J. W. Goodman and E. G. Rawson, “Statistics of modal noise in fibers: a case of constrained speckle,” Opt. Lett. 6(7), 324–326 (1981). [CrossRef] [PubMed]

] and assuming that Wf is constant, the mean value (μ) and the variance (σ2) of Wd are equal to
μ(Wd)=1WfMdMf=1WfAdAf=1Wfr2a2andσ2(Wd)=1(Wf)2Md(MfMd)(Mf)2(Mf+1),
(2)
respectively.

Such expressions correspond to a beta distribution. Figure 3(a)
Fig. 3 (a) The normalized mean value and (b) the square root of variance of the received output power as a function of the percentage of the total modes received by the detector.
depicts the mean value and Fig. 3(b) depicts the standard deviation of Wd as functions of the percentage of modes collected by the detector (Md/Mf ·100) both normalized by the inverse of Wf. From Fig. 3(b), it can be observed that in the case of the detector area coincided with that of the fiber end facet (Ad = Af), the variation of the optical power incident to the detector over time is zero. When the detector area is smaller (the percentage of the total modes collected by the detector is less than 100%), the standard deviation of Wd remains very small and in all cases very close to zero. This last conclusion implies that the frequency response does not vary with time.

3. Space-time block codes

STBCs can be classified in transmit diversity techniques. The first STBC with two transmit antennas and M receive antennas was invented by S. Alamouti [21

21. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Comm. 16(8), 1451–1458 (1998). [CrossRef]

]. The generalization to N transmit and M receive antennas was presented by V. Tarokh et. al [22

22. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Comm. 17(3), 451–460 (1999). [CrossRef]

].

Their main advantages are their simplicity, the maximum order of diversity they achieve and the linear processing at the receiver. Maximum diversity order enhances the transmission performance and is equal to N × M for an N × M STBC scheme. Linear processing at the receiver means that symbol-by-symbol decoding is done and combined detection for all the transmitted block of symbols is not required.

STBCs are optimized for Rayleigh flat fading channels. Channels that are frequency selective, such as SI-POF, are not appropriate for STBCs. However, by applying DMT instead of plain NRZ-OOK, for each subcarrier the channel becomes a frequency non-selective (flat fading) and the STBC scheme can be applied in the subcarrier domain.

4. Space-time block codes - multiple input single output optical channel model

4.1 Channel description

Firstly, STBC schemes with N (N ∈ [2

2. B. Charbonnier, P. Urvoas, M. Ouzzif, J. Le Masson, J. D. Lambkin, M. O’Gorman, and R. Gaudino, “EU Project POF-PLUS: gigabit transmission over 50 m of step-index plastic optical fiber for home networking,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWR4.

4

4. A. Nespola, A. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, and N. Weber, “High-speed communications over polymer optical fibers for in-building cabling and home networking,” IEEE Photon. J. 2(3), 347–358 (2010). [CrossRef]

]) optical sources and a single receiver are being investigated. The detection area of the receiver is considered to be at least equal to the surface of the fiber end facet. It is assumed that SSD has been already achieved for a fiber length equal to 100 m, which is a realistic consideration. Assuming that the distance (a few tens of μms) between the different emitters located at the SI-POF front end facet is such (relative to the emission wavelength of 650 nm) that each beam excites different modes subjected to independent fading. In the following simulations, no geometric representation of the position of the sources is considered, and only the formula of the impulse response is used. A schematic of the simulation setup is shown in Fig. 4
Fig. 4 Schematic of the simulation setup.
.

For each source, direct intensity modulation is applied in the linear regime of the function P out = f (I in) of the optical source. Proper electrical bias is applied to ensure that the driving current is in all cases greater that the source’s threshold current, in order to avoid turn-on-delay effects. The slope of the curve is used in order to represent the conversion of current to optical power. Ideally, it is assumed that no saturation effects appear during modulation. The SI-POF can be considered a Low Pass Filter (LPF), as shown in Fig. 1(a). Different spectral components of a signal will be affected differently from the channel, because of the shape of the channel’s frequency response. DMT can alleviate the problems that appear in a frequency selective channel, as the SI-POF, by making the spectrum covered by each subcarrier a flat fading channel. Moreover, all the processing concerns optical power and not optical fields. Direct detection is considered at the reception side. A factor that represents responsivity is considered for the transformation of optical power to electrical current. The detector receives all the optical power that comes out from the SI-POF in this instance.

The encoding and decoding of STBCs is applied in the subcarrier domain before the Inverse Fast Fourier Transform (IFFT) at the two sources and after the FFT at the receiver, respectively [6

6. W. Zhang, X.-G. Xia, and K. Letaief, “Space-time/frequency coding for MIMO-OFDM in next generation broadband wireless systems,” IEEE Wireless Commun. 14(3), 32–43 (2007). [CrossRef]

,19

19. S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation [Invited],” J. Opt. Netw. 7(2), 183–196 (2008). [CrossRef]

]. In every transmitted DMT symbol, the CP with the proper length is appended. Channel estimation and synchronization are supposed to have been performed successfully. In our case the receiver has perfect knowledge of the channels.

The following analysis is for a 2 × 1 STBC scheme, but the same procedure is followed for the rest of the schemes, even in the case of the 2 × 2 STBC configuration [22

22. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Comm. 17(3), 451–460 (1999). [CrossRef]

]. During two successive DMT symbol periods, for subcarrier k, the complex symbols S 0, k and S 1, k will be coded using the Alamouti STBC scheme in order to construct properly the DMT symbols that will be transmitted from each source. The channels must remain constant for the two DMT symbol periods. Let the duration of every DMT symbol be equal to Ts. From the procedure already described, at time t, two electrical currents, I 0(t) and I 1(t), are generated that correspond to the DMT symbols of the two sources, and at time t + Ts, two currents, Ĩ 0(t + Ts) and Ĩ 1(t + Ts), arise that correspond to the following DMT symbols. If the slope of the curve P out = f (I in) for each source is equal to β – in W/A units – then the instant transmitted optical power will be equal to P out = β·I in. Assuming uncorrelated channels and the linearity of the system, the instant power at the fiber end for the first and second DMT symbol durations will be
r0=r(t)=h0(t)(βI0(t))+h1(t)(βI1(t))r1=r(t+Ts)=h0(t)(βI˜0(t+Ts))+h1(t)(βI˜1(t+Ts)),
(3)
respectively, where h 0(t) and h 1(t) are the impulse responses of the two respective channels. Due to the frequency selectivity of the channel, convolution (“*” symbol) is realized. For a photodetector with responsivity R (in A/W), the electrical current signal during the first and second DMT symbol durations will be r 0 and r 1 multiplied by R plus the thermal noise that is real and follows a Gaussian distribution, which is the only source of noise considered here. After removal of the CP, for every subcarrier k and for the first two DMT symbols duration, the following complex numbers arise in matrix form [21

21. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Comm. 16(8), 1451–1458 (1998). [CrossRef]

]:
R0,k=[H0,kH1,k][S0,kS1,k]+N0,k,tR1,k=[H0,kH1,k][S1,kS0,k]+N1,k,t+Ts,
(4)
respectively, where H 0, k and H 1, k are the frequency responses of the two channels that correspond to subcarrier k. The factor b and the responsivity R have been included in the frequency responses in Eq. (4). N 0, k and N 1, k are complex numbers representing the thermal noise in the frequency domain. Combining R 0, k and R 1, k properly, the estimations of the complex symbols S 0, k and S 1, k can be produced [21

21. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Comm. 16(8), 1451–1458 (1998). [CrossRef]

]. The two symbols will be decoded one by one.

The SISO and the 2 × 1 STBC schemes can achieve the same rate for a specific number of subcarriers that carry useful symbols that have been produced by the same QAM constellation. If the same rate is desired for the 3 × 1 and 4 × 1 STBC transmission schemes, either more subcarriers must be used than in the 2 × 1 case or denser QAM constellations or both.

4.2 Margin Adaptive (MA) bit loading

Algorithms that allocate the number of bits per subcarrier according to the corresponding SNR have been examined thoroughly. According to the results the algorithms achieve, they are classified in two categories [3

3. S. C. J. Lee, F. Breyer, S. Randel, D. Cárdenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWM2.

]: Rate and Margin Adaptive bit loading algorithms. RA algorithms are used for the maximization of the bit rate for a fixed BER and given power constraint, while MA loading algorithms achieve the minimization of the BER for a given bit rate. Here, Chow’s MA Loading algorithm [24

24. J. M. Cioffi, Advanced digital communication, Course Reader (2008). http://www.stanford.edu/group/cioffi/ee379c/.

] will be considered. The number of bits that can be carried by subcarrier k with SNR equal to SNRk is
bk,max=log2(1+SNRk)
(5)
However, introducing a SNR gap (Γ), which brings a loss in capacity (Γ > 1), (5) becomes
bk=log2(1+SNRk/Γ),withSNRk=Ekgk,
(6)
where, Ek is the average symbol energy in normalized units of this subcarrier and gk represents the subcarrier SNR when unit energy is applied. The gap Γ is considered constant for all subcarriers. For a given probability of symbol error Psymbol, the gap is approximated by the following relation [2

2. B. Charbonnier, P. Urvoas, M. Ouzzif, J. Le Masson, J. D. Lambkin, M. O’Gorman, and R. Gaudino, “EU Project POF-PLUS: gigabit transmission over 50 m of step-index plastic optical fiber for home networking,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWR4.

]
Γ=1/3(Qinv(Psymbol/4))2,
(7)
where Qinv is the inverse of the Q function.

4.3 Correlation

Here, hypothetical existence of correlation between multiple channels is taken into account by the insertion of a matrix that is called correlation matrix [23

23. H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inf. Theory 49(10), 2636–2647 (2003). [CrossRef]

] (Section III.B). For a 2 × 1 STBC scheme, the introduction of channel correlation in Eqs. (3) and (4) leads to the following expressions for the frequency response matrix and the impulse responses
[H0,kH1,k]([H0,kH1,k](R1/2)T)withR1/2(R1/2)H=Pcor=[1ρρ1]and
(8)
h0h0(R1/2)T(1,1)+h1(R1/2)T(2,1)andh1h0(R1/2)T(2,1)+h1(R1/2)T(2,2),
(9)
where, Pcor is the correlation matrix and ρ is the correlation coefficient, with ρ∈ℜ, 0≤ ρ≤1. Superscripts T and H denote transpose and transpose conjugate, respectively. For the more general case of N sources, Pcor is an N × N matrix, the elements of the main diagonal of the matrix are equal to one and the rest are equal to ρ. With ρ = 0, no correlation is considered. If the correlation is considered in the optical power domain, Pcor has real elements and R 1/2 and (R 1/2)H are real as well, with (R 1/2)H = (R 1/2)T. R 1/2 is a lower triangular matrix. It is assumed that the receiver knows the impulse responses but not the correlation coefficient. Pcor remains constant during all transmissions. The elements of (R 1/2)T ((R 1/2)T(x,y) in Eq. (9)) are multiplicative coefficients. It should be pointed out that the type of correlation included in the simulations originates from the insufficient spatial displacement between the sources, a fact that can be avoided in an experimental fiber optic transmitter arrangement using large core POFs. However, the receiver(s) does/do not realize that the correlation may appear during propagation through the medium. Therefore, this is a first approximation that is used in order to examine the impact of the phenomenon.

5. Simulation results and discussion

In this section, the simulation results are presented. Several schemes, all using DMT in combination with STBC encoding, were considered. The evaluation of each scheme was performed in terms of Bit Error Rate (BER) versus the multi-channel electrical symbol SNR, as defined in [24

24. J. M. Cioffi, Advanced digital communication, Course Reader (2008). http://www.stanford.edu/group/cioffi/ee379c/.

], at the receiver. The subcarrier spacing (Δf) was set equal to 512 KHz and the CP was 5% of the 1/Δf duration. The duration of each DMT symbol was 2050.78 nsec, including a CP of 97.66 nsec. 2 × 1024 point IFFT and FFT were used. The first two subcarriers that were never used were followed by a number of information carrying subcarriers (NSC). Zero padding was applied whenever all 1024 subcarriers were not used. In all cases, the same bit rate was applied (~1.25 Gbit/s). More subcarriers in combination with denser constellations were used for the lower rate STBCs. The complex symbols in the constellations were not Gray-coded, while no clipping was applied to the DMT signal. More than 285000 complex symbols (106 bits) were transmitted in any case, in order to be able to measure BERs up to 10−4 accurately.

5.1 DMT with STBC encoding (without bit loading)

In Fig. 5, the BER versus the SNR is depicted after transmission over 100 m of SI-POF, without considering any channel correlation. The horizontal dashed line represents the 10−3 BER limit – over which error free (BER < 10−10) transmission can be achieved if Forward Error Correction is used [26

26. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010). [CrossRef] [PubMed]

] – and the vertical dashed line represents a reasonable SNR upper limit for a practical link. The average energy per subcarrier is the same for all cases. The diversity order of 2 of the Alamouti scheme achieves the lower BER (better performance) for any SNR value in this instance, while it requires a 3 dB smaller SNR value as compared to the SISO scheme in order to achieve a 10−3 BER, for both given configurations. The corresponding 3 × 1 and 4 × 1 STBC schemes achieve worse results than the 2 × 1 scheme for all transmission cases, despite the greater diversity order provided by these two STBCs. This behavior is attributed to the addition of extra subcarriers and the higher constellations required to compensate their lower rate (3/4), in order to achieve the same bit rate. By adding more subcarriers, the symbols that correspond to the final subcarriers (larger frequencies) are severely affected by the channel’s frequency response. In addition, the denser constellations leave little “space” for the symbols to be corrupted by noise. Subsequently, the worse performance of 3 × 1 and 4 × 1 STBC schemes is justified. For large SNR values, the noise is not a crucial parameter for the performance degradation of the system. Thus, using less subcarriers with denser constellations gives better results.

In presence of correlation the 10−3 BER limit is hard to meet for reasonable SNR values, for the 3 × 1 and 4 × 1 STBC schemes, as shown in Fig. 6
Fig. 6 BER for SISO, 2 × 1, 3 × 1 and 4 × 1 STBC schemes as a function of the multi-channel electrical SNR at the receiver. Correlation is included for the STBC schemes.
. This is also the case for the Alamouti scheme for ρ greater than 0.1. It seems that if correlation exists between the channels, the 3 × 1 and 4 × 1 STBC schemes are meaningless, as they increase the complexity and they also perform worse than the SISO scheme. The degradation of the Alamouti scheme is tolerable for small values of ρ. However, this model is pessimistic, especially as the number of sources increase, meaning that the existence or inexistence of correlation is crucial and in case of existence, a realistic representation model would be very helpful.

The impact of the radius decrease of a circular detector to the BER is depicted in Fig. 7
Fig. 7 BER as a function of the detector radius. The multi-channel electrical SNR value of 28 dB was chosen for the case of detector radius equal to 100% of the fiber core radius.
, for a specific SNR value of a detector that covers the entire fiber core output facet (r = a). The SNR chosen (~28 dB) is the value for which almost 10−3 BER is achieved for the Alamouti case in Fig. 6. For this specific SNR value, the noise was produced for each scheme separately and the BERs for r = a were first obtained for each transmission. The noise that has been produced for each scheme remains constant for the rest of the BER computations for r < a, leading to a reduction of SNR. The 2 × 2 Alamouti scheme is also depicted in the same figure. The two detectors were identical and circular. Their radius was such that both detectors can be contained over the fiber surface. Furthermore, some distance between the detectors was considered for the same reason that some distance is needed between the places where the optical beams from each source enter the SI-POF. That’s why the BER for the 2 × 2 Alamouti scheme has been computed only for 4 percentage values of the detector radius. Because of the SSD being achieved, the impulse responses were the same to each other and their amplitude was considered constant as well.

From Fig. 7 and taking into account [1

1. E. Grivas, N. Raptis, and D. Syvridis, “An optical mode filtering technique for the improvement of the large core SI-POF link performance,” J. Lightwave Technol. 28(12), 1796–1801 (2010). [CrossRef]

] and [20

20. J. W. Goodman and E. G. Rawson, “Statistics of modal noise in fibers: a case of constrained speckle,” Opt. Lett. 6(7), 324–326 (1981). [CrossRef] [PubMed]

], for every transmission scheme with a single detector, it is obvious that the best results are obtained when using a photodetector with an active area equal to that of the fiber facet. There is no part on the curve of each transmission scheme where the use of a detector with a radius smaller than a gave better BER results than the case of r = a.

Taking into account the second detector, for any radius value, the 2 × 2 STBC scheme achieves worse results than the 2 × 1 scheme with r = a. This means that the power loss outperforms not only the bandwidth enhancement, but also the diversity order increase [11

11. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000). [CrossRef] [PubMed]

]. However, for the same detector radius and a specific SNR (per detector), the 2 × 2 scheme achieves lower BER than the 2 × 1 Alamouti scheme, which is a reasonable result. The insertion of probable correlation is also involved in the results presented in Fig. 7. For every case, the correlation leads to a performance degradation. Moreover, no great improvement is provided by employing a second detector (for the Alamouti scheme), which additionally will increase the complexity of the entire system. Thus, the single detector is the best candidate for transmission in SI-POFs using STBC encoding schemes.

5.2 DMT with STBC encoding and margin adaptive bit loading

As shown in Fig. 8
Fig. 8 BER for SISO, 2 × 1, 3 × 1 and 4 × 1 STBC schemes as a function of multi-channel electrical SNR with Chow’s MA loading algorithm applied for each SNR value. For the transmit diversity schemes, correlation is also considered.
, with bit loading, the desired BER is met for smaller SNR values for all the schemes and the gain due to diversity order is recovered for the lower rate STBC schemes as the SNR increases. The improvement is obvious, especially for the 3 × 1 and 4 × 1 STBC schemes that require over 6 dB lower SNR values in order to achieve the same BER value (10−3) with the respective SISO configuration.

Once again, the impact of suppositional correlation on the system is disastrous. The change of each curve due to correlation insertion is intent and the performance deterioration is severe, even for small values of the correlation coefficient, leading to a worse performance for all the STBCs schemes when compared to the SISO one.

6. Conclusions

In this paper, the application of STBC encoding in a Large Core SI-POF transmission system has been numerically evaluated. If no bit loading techniques are used, only the 2x1 STBC scheme proposed by Alamouti improves the performance of the transmission system, compared to the conventional SISO scheme. In contrast, the application of Chow’s MA bit loading algorithm showed that a 10−3 BER is achieved for smaller SNR values for all the schemes in comparison to the case without bit loading. Moreover, the diversity gain is recovered for the 3 × 1 and the 4 × 1 STBC schemes. Channel correlation is of crucial importance, since even for small values of the correlation coefficient the calculated system performance is strongly degraded. However, the existence of such correlation is not clearly documented in the literature. In addition, there is strong evidence that such correlation can be avoided by a careful design of the system. Finally, the detector radius reduction doesn’t offer any improvement because the bandwidth increase is overwhelmed by the power loss. This restricts the useful configurations to schemes with a single detector.

References and links

1.

E. Grivas, N. Raptis, and D. Syvridis, “An optical mode filtering technique for the improvement of the large core SI-POF link performance,” J. Lightwave Technol. 28(12), 1796–1801 (2010). [CrossRef]

2.

B. Charbonnier, P. Urvoas, M. Ouzzif, J. Le Masson, J. D. Lambkin, M. O’Gorman, and R. Gaudino, “EU Project POF-PLUS: gigabit transmission over 50 m of step-index plastic optical fiber for home networking,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWR4.

3.

S. C. J. Lee, F. Breyer, S. Randel, D. Cárdenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWM2.

4.

A. Nespola, A. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, and N. Weber, “High-speed communications over polymer optical fibers for in-building cabling and home networking,” IEEE Photon. J. 2(3), 347–358 (2010). [CrossRef]

5.

J. Yang, X. Li, M. S. Alfiad, A. M. J. Koonen, and H. P. A. van den Boom, “Low cost high capacity data transmission over plastic optical fibre using quadrature amplitude modulation,” presented at the Symposium IEEE/LEOS Benelux Chapter, Eindhoven, Netherlands, 2006.

6.

W. Zhang, X.-G. Xia, and K. Letaief, “Space-time/frequency coding for MIMO-OFDM in next generation broadband wireless systems,” IEEE Wireless Commun. 14(3), 32–43 (2007). [CrossRef]

7.

H. P. A. van den Boom, A. M. J. Koonen, F. M. Huijskens, and W. van Gils, “Angular mode group diversity multiplexing for multi-channel communication in a single step-index plastic optical fibre,” presented at the Symposium IEEE/LEOS Benelux Chapter, Mons, Belgium, 2005.

8.

S. Schöllmann, N. Schrammar, and W. Rosenkranz, “Experimental realization of 3 × 3 MIMO system with mode group diversity multiplexing limited by modal noise,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA68.

9.

C. P. Tsekrekos, A. Martinez, F. M. Huijskens, and A. M. J. Koonen, “Mode group diversity multiplexing transceiver design for graded-index multimode fibers,” in Proceedings of 31st European Conference on Optical Communication, Glasgow, Scotland, 25–29 Sept. 2005.

10.

R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett. 10(3), 195–197 (2006). [CrossRef]

11.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000). [CrossRef] [PubMed]

12.

M. Greenberg, M. Nazarathy, and M. Orenstein, “Data parallelization by optical MIMO transmission over multimode fiber with intermodal coupling,” J. Lightwave Technol. 25(6), 1503–1514 (2007). [CrossRef]

13.

J. Siuzdak, L. Maksymiuk, and G. Stepniak, “A 2 and 3 channel mode group diversity multiplexing transmission over graded and step index multimode fibers,” in Proceedings of 34th European Conference on Optical Communication, Brussels, Belgium, 21–25 Sept., 2008.

14.

A. Djordjevich and S. Savović, “Numerical solution of the power flow equation in step-index plastic optical fibers,” J. Opt. Soc. Am. B 21(8), 1437–1442 (2004). [CrossRef]

15.

J. Mateo, M. A. Losada, and J. Zubia, “Frequency response in step index plastic optical fibers obtained from the generalized power flow equation,” Opt. Express 17(4), 2850–2860 (2009). [CrossRef] [PubMed]

16.

F. Breyer, N. Hanik, S. Randel, and B. Spinnler, “Investigations on electronic equalization for step-index polymer optical fiber systems,” presented at the Symposium IEEE/LEOS Benelux Chapter, Eindhoven, Netherlands, 2006.

17.

B. Drljača, S. Savović, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time-dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

18.

D. Gloge, “Impulse response of clad optical multimode fibers,” Bell Syst. Tech. J. 52, 801–816 (1973).

19.

S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation [Invited],” J. Opt. Netw. 7(2), 183–196 (2008). [CrossRef]

20.

J. W. Goodman and E. G. Rawson, “Statistics of modal noise in fibers: a case of constrained speckle,” Opt. Lett. 6(7), 324–326 (1981). [CrossRef] [PubMed]

21.

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Comm. 16(8), 1451–1458 (1998). [CrossRef]

22.

V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Comm. 17(3), 451–460 (1999). [CrossRef]

23.

H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inf. Theory 49(10), 2636–2647 (2003). [CrossRef]

24.

J. M. Cioffi, Advanced digital communication, Course Reader (2008). http://www.stanford.edu/group/cioffi/ee379c/.

25.

S. B. Colak and A. Alonso, “Spectral modulation of MIMO channels for multimode fiber communications,” presented at the Symposium IEEE/LEOS Benelux Chapter, Enschede, Netherlands, 2003.

26.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010). [CrossRef] [PubMed]

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 17, 2011
Revised Manuscript: April 13, 2011
Manuscript Accepted: April 14, 2011
Published: May 11, 2011

Citation
Nikos Raptis, Evangelos Grivas, Evangelos Pikasis, and Dimitris Syvridis, "Space-time block code based MIMO encoding for large core step index plastic optical fiber transmission systems," Opt. Express 19, 10336-10350 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10336


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Grivas, N. Raptis, and D. Syvridis, “An optical mode filtering technique for the improvement of the large core SI-POF link performance,” J. Lightwave Technol. 28(12), 1796–1801 (2010). [CrossRef]
  2. B. Charbonnier, P. Urvoas, M. Ouzzif, J. Le Masson, J. D. Lambkin, M. O’Gorman, and R. Gaudino, “EU Project POF-PLUS: gigabit transmission over 50 m of step-index plastic optical fiber for home networking,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWR4.
  3. S. C. J. Lee, F. Breyer, S. Randel, D. Cárdenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWM2.
  4. A. Nespola, A. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, and N. Weber, “High-speed communications over polymer optical fibers for in-building cabling and home networking,” IEEE Photon. J. 2(3), 347–358 (2010). [CrossRef]
  5. J. Yang, X. Li, M. S. Alfiad, A. M. J. Koonen, and H. P. A. van den Boom, “Low cost high capacity data transmission over plastic optical fibre using quadrature amplitude modulation,” presented at the Symposium IEEE/LEOS Benelux Chapter, Eindhoven, Netherlands, 2006.
  6. W. Zhang, X.-G. Xia, and K. Letaief, “Space-time/frequency coding for MIMO-OFDM in next generation broadband wireless systems,” IEEE Wireless Commun. 14(3), 32–43 (2007). [CrossRef]
  7. H. P. A. van den Boom, A. M. J. Koonen, F. M. Huijskens, and W. van Gils, “Angular mode group diversity multiplexing for multi-channel communication in a single step-index plastic optical fibre,” presented at the Symposium IEEE/LEOS Benelux Chapter, Mons, Belgium, 2005.
  8. S. Schöllmann, N. Schrammar, and W. Rosenkranz, “Experimental realization of 3 × 3 MIMO system with mode group diversity multiplexing limited by modal noise,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA68.
  9. C. P. Tsekrekos, A. Martinez, F. M. Huijskens, and A. M. J. Koonen, “Mode group diversity multiplexing transceiver design for graded-index multimode fibers,” in Proceedings of 31st European Conference on Optical Communication, Glasgow, Scotland, 25–29 Sept. 2005.
  10. R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett. 10(3), 195–197 (2006). [CrossRef]
  11. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000). [CrossRef] [PubMed]
  12. M. Greenberg, M. Nazarathy, and M. Orenstein, “Data parallelization by optical MIMO transmission over multimode fiber with intermodal coupling,” J. Lightwave Technol. 25(6), 1503–1514 (2007). [CrossRef]
  13. J. Siuzdak, L. Maksymiuk, and G. Stepniak, “A 2 and 3 channel mode group diversity multiplexing transmission over graded and step index multimode fibers,” in Proceedings of 34th European Conference on Optical Communication, Brussels, Belgium, 21–25 Sept., 2008.
  14. A. Djordjevich and S. Savović, “Numerical solution of the power flow equation in step-index plastic optical fibers,” J. Opt. Soc. Am. B 21(8), 1437–1442 (2004). [CrossRef]
  15. J. Mateo, M. A. Losada, and J. Zubia, “Frequency response in step index plastic optical fibers obtained from the generalized power flow equation,” Opt. Express 17(4), 2850–2860 (2009). [CrossRef] [PubMed]
  16. F. Breyer, N. Hanik, S. Randel, and B. Spinnler, “Investigations on electronic equalization for step-index polymer optical fiber systems,” presented at the Symposium IEEE/LEOS Benelux Chapter, Eindhoven, Netherlands, 2006.
  17. B. Drljača, S. Savović, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time-dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).
  18. D. Gloge, “Impulse response of clad optical multimode fibers,” Bell Syst. Tech. J. 52, 801–816 (1973).
  19. S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation [Invited],” J. Opt. Netw. 7(2), 183–196 (2008). [CrossRef]
  20. J. W. Goodman and E. G. Rawson, “Statistics of modal noise in fibers: a case of constrained speckle,” Opt. Lett. 6(7), 324–326 (1981). [CrossRef] [PubMed]
  21. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Comm. 16(8), 1451–1458 (1998). [CrossRef]
  22. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Comm. 17(3), 451–460 (1999). [CrossRef]
  23. H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inf. Theory 49(10), 2636–2647 (2003). [CrossRef]
  24. J. M. Cioffi, Advanced digital communication, Course Reader (2008). http://www.stanford.edu/group/cioffi/ee379c/ .
  25. S. B. Colak and A. Alonso, “Spectral modulation of MIMO channels for multimode fiber communications,” presented at the Symposium IEEE/LEOS Benelux Chapter, Enschede, Netherlands, 2003.
  26. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited