## Field test of quantum key distribution in the Tokyo QKD Network |

Optics Express, Vol. 19, Issue 11, pp. 10387-10409 (2011)

http://dx.doi.org/10.1364/OE.19.010387

Acrobat PDF (2295 KB)

### Abstract

A secure communication network with quantum key distribution in a metropolitan area is reported. Six different QKD systems are integrated into a mesh-type network. GHz-clocked QKD links enable us to demonstrate the world-first secure TV conferencing over a distance of 45km. The network includes a commercial QKD product for long-term stable operation, and application interface to secure mobile phones. Detection of an eavesdropper, rerouting into a secure path, and key relay via trusted nodes are demonstrated in this network.

© 2011 OSA

## 1. Introduction

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. **74**(1), 145–195 (2002). [CrossRef]

2. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. **81**(3), 1301–1350 (2009). [CrossRef]

4. I. D. Quantique, http://www.idquantique.com/

6. QuintessenceLabs Pty Ltd, http://www.quintessencelabs.com/

8. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. **11**(7), 075001 (2009). [CrossRef]

9. T. Länger and G. Lenhart, “Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD,” N. J. Phys. **11**(5), 055051 (2009). [CrossRef]

10. SWISS QUANTUM, http://www.swissquantum.com/

11. A. Mirza and F. Petruccione, “Realizing long-term quantum cryptography,” J. Opt. Soc. Am. B **27**(6), A185–A188 (2010). [CrossRef]

12. Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express **13**(2), 660–665 (2005). [CrossRef] [PubMed]

13. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” N. J. Phys. **11**(10), 105001 (2009). [CrossRef]

15. S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, G.-C. Guo, and Z.-F. Han, “Field test of wavelength-saving quantum key distribution network,” Opt. Lett. **35**(14), 2454–2456 (2010). [CrossRef] [PubMed]

## 2. Outline of the Tokyo QKD Network

17. M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, and M. Sasaki, “Photon level crosstalk between parallel fibers installed in urban area,” Opt. Express **18**(21), 22199–22207 (2010). [CrossRef] [PubMed]

21. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. **94**(23), 230503 (2005). [CrossRef] [PubMed]

22. K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A **68**(2), 022317 (2003). [CrossRef]

23. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. **68**(5), 557–559 (1992). [CrossRef] [PubMed]

24. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. **92**(5), 057901 (2004). [CrossRef] [PubMed]

8. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. **11**(7), 075001 (2009). [CrossRef]

## 3. QKD systems used in the Tokyo QKD Network

### 3.1 NEC-NICT system

25. A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express **16**(15), 11354–11360 (2008). [CrossRef] [PubMed]

26. S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. **35**(13), 2133–2135 (2010). [CrossRef] [PubMed]

19. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. **91**(5), 057901 (2003). [CrossRef] [PubMed]

21. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. **94**(23), 230503 (2005). [CrossRef] [PubMed]

21. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. **94**(23), 230503 (2005). [CrossRef] [PubMed]

28. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A **72**(1), 012326 (2005). [CrossRef]

29. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. **96**(7), 070502 (2006). [CrossRef] [PubMed]

30. M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the decoy method,” Phys. Rev. A **76**(1), 012329 (2007). [CrossRef]

31. M. Hayashi, “General theory for decoy-state quantum key distribution with an arbitrary number of intensities,” N. J. Phys. **9**(8), 284 (2007). [CrossRef]

### 3.2 TREL system

32. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. **96**(16), 161102 (2010). [CrossRef]

33. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. **91**(4), 041114 (2007). [CrossRef]

34. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express **16**(23), 18790–18797 (2008). [CrossRef]

35. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. **91**(4), 041114 (2007). [CrossRef]

36. G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” Lect. Notes Comput. Sci. **765**, 410–423 (1994). [CrossRef]

32. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. **96**(16), 161102 (2010). [CrossRef]

8. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. **11**(7), 075001 (2009). [CrossRef]

### 3.3 NTT-NICT system

22. K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A **68**(2), 022317 (2003). [CrossRef]

37. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics **1**(6), 343–348 (2007). [CrossRef]

38. E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A **73**(1), 012344 (2006). [CrossRef]

_{3}intensity modulator. Each pulse is randomly phase-modulated by {0, π} with a LiNbO

_{3}phase modulator driven by the random bit signal from the FPGA board [39

39. T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express **17**(11), 9053–9061 (2009). [CrossRef] [PubMed]

40. The third international conference on Updating Quantum Cryptography and Communications (UQCC2010), http://www.uqcc2010.org/

### 3.4 Mitsubishi system

^{−6}. InGaAs/InP APDs are cooled down to −40°C, using Peltier modules. Single photon detectors were realized with both sinusoidal wave gating and a self-differencing circuit.

*n*

^{2}) to O(

*n*log(

*n*)) for the block size

*n*by using the fast Fourier transform algorithm for multiplying the Toeplitz matrix and a reconciled key. The reduction amounts to 4 orders of magnitudes for

*n*= 10

^{6}, which is currently known to be the minimum block size to eliminate the finite size effect in distilling the secure key. The secure key rate was 2 kbps and the QBER is about 4.5%. We confirmed the stability of the key generation. Figure 12 shows the experimental results of continuous operation. Stable key generation for about 3 days was demonstrated.

### 3.5. IDQ system

24. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. **92**(5), 057901 (2004). [CrossRef] [PubMed]

2. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. **81**(3), 1301–1350 (2009). [CrossRef]

24. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. **92**(5), 057901 (2004). [CrossRef] [PubMed]

40. The third international conference on Updating Quantum Cryptography and Communications (UQCC2010), http://www.uqcc2010.org/

### 3.6 All-Vienna system

23. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. **68**(5), 557–559 (1992). [CrossRef] [PubMed]

41. A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. **11**(4), 045013 (2009). [CrossRef]

41. A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. **11**(4), 045013 (2009). [CrossRef]

^{20}+ 1.

## 4. Demonstration of secure network operation

42. The “Tokyo QKD Network video” of the network operation demonstrated during the conference UQCC2010 is available at http://www.uqcc2010.org/

## 5. Conclusions and future outlook

## Acknowledgments

## References and links

1. | N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. |

2. | V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. |

3. | D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. |

4. | I. D. Quantique, http://www.idquantique.com/ |

5. | Q. Magi Technologies, Inc., http://www.magiqtech.com/MagiQ/Home.html |

6. | QuintessenceLabs Pty Ltd, http://www.quintessencelabs.com/ |

7. | C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA Quantum Network,” in Quantum Information and Computation III, E. J. Donkor, A. R. Pirich, and H. E. Brandt, eds., Proc. SPIE |

8. | M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. |

9. | T. Länger and G. Lenhart, “Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD,” N. J. Phys. |

10. | SWISS QUANTUM, http://www.swissquantum.com/ |

11. | A. Mirza and F. Petruccione, “Realizing long-term quantum cryptography,” J. Opt. Soc. Am. B |

12. | Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express |

13. | T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” N. J. Phys. |

14. | D. Lancho, J. Martinez-Mateo, D. Elkouss, M. Soto, and V. Martin, “QKD in standard optical telecommunications networks,” Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol. 36, pp. 142–149: arXiv:1006.1858 [quant-ph] (2010). |

15. | S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, G.-C. Guo, and Z.-F. Han, “Field test of wavelength-saving quantum key distribution network,” Opt. Lett. |

16. | T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W.-Q. Cai, L. Ju, L.-K. Chen, L.-J. Wang, Y. Gao, K. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Metropolitan all-pass and inter-city quantum communication network,” arXiv:1008.1508v2 [quant-ph] (2010). |

17. | M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, and M. Sasaki, “Photon level crosstalk between parallel fibers installed in urban area,” Opt. Express |

18. | C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore India (1984), pp. 175–179. |

19. | W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. |

20. | H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. |

21. | X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. |

22. | K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A |

23. | C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. |

24. | V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. |

25. | A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express |

26. | S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. |

27. | S. Obana and A. Tanaka, “General purpose hash function family computer and shared key creating system,” Patent WO/2007/034685 (March 29, 2007). |

28. | X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A |

29. | Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. |

30. | M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the decoy method,” Phys. Rev. A |

31. | M. Hayashi, “General theory for decoy-state quantum key distribution with an arbitrary number of intensities,” N. J. Phys. |

32. | A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. |

33. | Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. |

34. | A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express |

35. | Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. |

36. | G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” Lect. Notes Comput. Sci. |

37. | H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics |

38. | E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A |

39. | T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express |

40. | The third international conference on Updating Quantum Cryptography and Communications (UQCC2010), http://www.uqcc2010.org/ |

41. | A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. |

42. | The “Tokyo QKD Network video” of the network operation demonstrated during the conference UQCC2010 is available at http://www.uqcc2010.org/ |

43. | A. Vakhitov, V. Makarov, and D.-R. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. |

44. | V. Makarov and D.-R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. |

45. | N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A |

46. | V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A |

47. | A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express |

48. | B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum crypto-systems,” Quantum Inf. Comput. |

49. | C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum key distribution systems,” Phys. Rev. A |

50. | Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking experimental demonstration of time-shift attack against practical quantum key distribution systems,” Phys. Rev. A |

51. | V. Makarov and J. Skaar, “Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols,” Quantum Inf. Comput. |

52. | S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” N. J. Phys. |

53. | L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics |

54. | F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” N. J. Phys. |

**OCIS Codes**

(060.5565) Fiber optics and optical communications : Quantum communications

(270.5568) Quantum optics : Quantum cryptography

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: March 10, 2011

Revised Manuscript: April 27, 2011

Manuscript Accepted: May 5, 2011

Published: May 11, 2011

**Citation**

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, "Field test of quantum key distribution in the Tokyo QKD Network," Opt. Express **19**, 10387-10409 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10387

Sort: Year | Journal | Reset

### References

- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
- V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009). [CrossRef]
- D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 5, 325–360 (2004).
- I. D. Quantique, http://www.idquantique.com/
- Q. Magi Technologies, Inc., http://www.magiqtech.com/MagiQ/Home.html
- QuintessenceLabs Pty Ltd, http://www.quintessencelabs.com/
- C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA Quantum Network,” in Quantum Information and Computation III, E. J. Donkor, A. R. Pirich, and H. E. Brandt, eds., Proc. SPIE 5815, 138–149 (2005); arXiv:quant-ph/0503058v2.
- M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. 11(7), 075001 (2009). [CrossRef]
- T. Länger and G. Lenhart, “Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD,” N. J. Phys. 11(5), 055051 (2009). [CrossRef]
- SWISS QUANTUM, http://www.swissquantum.com/
- A. Mirza and F. Petruccione, “Realizing long-term quantum cryptography,” J. Opt. Soc. Am. B 27(6), A185–A188 (2010). [CrossRef]
- Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13(2), 660–665 (2005). [CrossRef] [PubMed]
- T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” N. J. Phys. 11(10), 105001 (2009). [CrossRef]
- D. Lancho, J. Martinez-Mateo, D. Elkouss, M. Soto, and V. Martin, “QKD in standard optical telecommunications networks,” Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol. 36, pp. 142–149: arXiv:1006.1858 [quant-ph] (2010).
- S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, G.-C. Guo, and Z.-F. Han, “Field test of wavelength-saving quantum key distribution network,” Opt. Lett. 35(14), 2454–2456 (2010). [CrossRef] [PubMed]
- T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W.-Q. Cai, L. Ju, L.-K. Chen, L.-J. Wang, Y. Gao, K. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Metropolitan all-pass and inter-city quantum communication network,” arXiv:1008.1508v2 [quant-ph] (2010).
- M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, and M. Sasaki, “Photon level crosstalk between parallel fibers installed in urban area,” Opt. Express 18(21), 22199–22207 (2010). [CrossRef] [PubMed]
- C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore India (1984), pp. 175–179.
- W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91(5), 057901 (2003). [CrossRef] [PubMed]
- H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005). [CrossRef] [PubMed]
- X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94(23), 230503 (2005). [CrossRef] [PubMed]
- K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68(2), 022317 (2003). [CrossRef]
- C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992). [CrossRef] [PubMed]
- V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92(5), 057901 (2004). [CrossRef] [PubMed]
- A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16(15), 11354–11360 (2008). [CrossRef] [PubMed]
- S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. 35(13), 2133–2135 (2010). [CrossRef] [PubMed]
- S. Obana and A. Tanaka, “General purpose hash function family computer and shared key creating system,” Patent WO/2007/034685 (March 29, 2007).
- X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005). [CrossRef]
- Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96(7), 070502 (2006). [CrossRef] [PubMed]
- M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the decoy method,” Phys. Rev. A 76(1), 012329 (2007). [CrossRef]
- M. Hayashi, “General theory for decoy-state quantum key distribution with an arbitrary number of intensities,” N. J. Phys. 9(8), 284 (2007). [CrossRef]
- A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010). [CrossRef]
- Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007). [CrossRef]
- A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16(23), 18790–18797 (2008). [CrossRef]
- Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007). [CrossRef]
- G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” Lect. Notes Comput. Sci. 765, 410–423 (1994). [CrossRef]
- H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007). [CrossRef]
- E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73(1), 012344 (2006). [CrossRef]
- T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009). [CrossRef] [PubMed]
- The third international conference on Updating Quantum Cryptography and Communications (UQCC2010), http://www.uqcc2010.org/
- A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009). [CrossRef]
- The “Tokyo QKD Network video” of the network operation demonstrated during the conference UQCC2010 is available at http://www.uqcc2010.org/
- A. Vakhitov, V. Makarov, and D.-R. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48(13), 2023–2038 (2001).
- V. Makarov and D.-R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. 52(5), 691–705 (2005). [CrossRef]
- N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73(2), 022320 (2006). [CrossRef]
- V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74(2), 022313 (2006). [CrossRef]
- A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15(15), 9388–9393 (2007). [CrossRef] [PubMed]
- B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum crypto-systems,” Quantum Inf. Comput. 7, 73–82 (2007).
- C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum key distribution systems,” Phys. Rev. A 75(3), 032314 (2007). [CrossRef]
- Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking experimental demonstration of time-shift attack against practical quantum key distribution systems,” Phys. Rev. A 78(4), 042333 (2008). [CrossRef]
- V. Makarov and J. Skaar, “Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols,” Quantum Inf. Comput. 8, 0622–0635 (2008).
- S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” N. J. Phys. 11(6), 065001 (2009). [CrossRef]
- L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4(10), 686–689 (2010). [CrossRef]
- F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” N. J. Phys. 12(11), 113026 (2010). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1 |
Fig. 2 |
Fig. 3 |

Fig. 4 |
Fig. 5 |
Fig. 6 |

Fig. 7 |
Fig. 8 |
Fig. 9 |

Fig. 10 |
Fig. 11 |
Fig. 12 |

Fig. 13 |
Fig. 14 |
Fig. 15 |

Fig. 16 |
Fig. 17 |
Fig. 18 |

Fig. 19 |
||

« Previous Article | Next Article »

OSA is a member of CrossRef.