OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11591–11596
« Show journal navigation

Optical vortex converter with helical-periodically poled ferroelectric crystal

Linghao Tian, Fangwei Ye, and Xianfeng Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11591-11596 (2011)
http://dx.doi.org/10.1364/OE.19.011591


View Full Text Article

Acrobat PDF (1030 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A kind of optical vortex converter is proposed in helical-periodically poled ferroelectric crystal based on transverse electro-optics effect. It can be used to generate optical vortex from non-vortex beam and transform the topological charge of optical vortex. An optical vortex adder or substrator is proposed under the control of electric filed. This device will find its applications in high dimensional communication system for signal processing and optical manipulation in micro and mesoscopic scale.

© 2011 OSA

1. Introduction

Light beam may carry both spin angular momentum (SAM) and orbital angular momentum (OAM) [1

1. S. Barnett, “Optical angular-momentum flux,” J. Opt. B Quantum Semiclassical Opt. 4(2), S7– S16 (2002). [CrossRef]

]. The SAM is associated with circular polarization and arises from the spin of individual photon with a value of or, for the left- or right-handed circular polarized light, respectively [2

2. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936). [CrossRef]

]. In contrast, OAM arises from the spiral phase distribution at the wavefront of a beam [3

3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]

]. The helical phase structure of light, commonly called as an optical vortex, is described by a phase cross section of exp(ilθ), where l can take any integer value, referred to as the topological charge(TC). Every photon in such a beam carries OAM of l. The optical vortices have drawn great interest because they are of importance for understanding fundamental physics and of a number of promising scientific applications ranging from optical manipulation [4

4. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]

] to single-cell nanosurgery [5

5. G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007). [CrossRef] [PubMed]

], superhigh-density optical data storage [6

6. R. J. Voogd, M. Singh, S. F. Pereira, A. S. van de Nes, and J. J. M. Braat, “The use of orbital angular momentum of light beams for super-high density optical data storage,” in OSA Annual Meeting FTuG14(Optical Society of America, Rochester, New York, 2004).

], quantum information processing [7

7. A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003). [CrossRef] [PubMed]

,8

8. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007). [CrossRef]

], cryptography [9

9. G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004). [CrossRef] [PubMed]

]. The control of optical vortex is of great significance for such applications, especially for the management of transfer between optical vortices with different TC. Although vortex beams occur naturally as higher order modes of laser cavities and optical fibers with beam shaping techniques to control their properties, they are mostly generated by some linear optical methods, i.e., mode converters [10

10. M. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993). [CrossRef]

], spiral Fresnel zone plates [11

11. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992). [CrossRef] [PubMed]

], spiral phase plate [12

12. M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994). [CrossRef]

], fork hologram [13

13. N. Heckenberg, R. McDuff, C. Smith, H. Rubinsztein-Dunlop, and M. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24(9), S951– S962 (1992). [CrossRef]

], q-plate [14

14. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006). [CrossRef] [PubMed]

], as well as some nonlinear optical process, specifically in second harmonic generation [15

15. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996). [CrossRef] [PubMed]

,16

16. J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997). [CrossRef]

], parametric down-conversion [17

17. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999). [CrossRef]

,18

18. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef] [PubMed]

], where a vortex beam is generated by another (already-present) vortex beam. Recently, Bahabad et al propose an idea that a vortex beam can be generated from a fundamental beam that contains no singularity with a helical-periodically poled ferroelectric crystal [19

19. A. Bahabad and A. Arie, “Generation of optical vortex beams by nonlinear wave mixing,” Opt. Express 15(26), 17619–17624 (2007). [CrossRef] [PubMed]

]. However, the forementioned methods for the transformation of TC are limited, and thus a more tunable method is desired.

In this paper, a kind of voltage-controlled optical vortex converter is proposed in a helical-periodically poled ferroelectric crystal, for example helical-periodically poled LiNbO3(HPPLN), marked with a TC l’. When the incident optical vortex with TC l is ordinary light, thanks to the transverse electro-optics effect, the external electric field can add the TC of crystal to extraordinary light, identified byl+l', hence the HPPLN works as an optical vortex adder. On the other hand, the HPPLN can also work as an optical vortex substractor for the extraordinary incidence, and the TC of output ordinary light is identified byll'. If there is no external electric field, the TC of output optical vortex remains l. Meanwhile, the optical vortex come from HPPLN can be served as a voltage-controlled optical spanner.

2. Theory

The transverse electro-optic effect is a nonlinear interaction between a light field and an external electric field. We assume that a monochromatic light with frequency ω is incident along the x-axis of the crystal and the external electric field is applied along the y-axis (Fig. 1
Fig. 1 Schematic diagram of transverse electro-optic effect in (a) periodically poled ferroelectric crystal and (b) helical-periodically poled ferroelectric crystal. (c) The coupling direction from ordinary light to extraordinary light in HPPLN. (d) The coupling direction from extraordinary light to ordinary light in HPPLN.
), and thus the total electric field can be written as
E(x,t)=E(x,ω=0)+[Eω(x)exp(iωt)+Eω(x)exp(iωt)]/2,
(1)
where E(x,ω=0)stands for the dc electric field. The second term of r.h.s of Eq. (1) represents for the light field, which, in our case, has an ordinary component and an extraordinary one, i.e., Eω(x)=i=12ω/niAi(x)exp(ikix),where(A1,A2)are the normalized amplitudes of ordinary and extraordinary light respectively, while (n1,n2) and (k1,k2)are their refractive index and wave-vector respectively. By substituting the Eq. (1) into the Maxwell equations, one arrives at the following coupled wave equations for the two components [20

20. G. L. Zheng, H. C. Wang, and W. L. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Express 14(12), 5535–5540 (2006). [CrossRef] [PubMed]

],

{dA1(x)/dx=iκg(r)A2(x)exp(iΔk'x)iν1g(r)A1(x)dA2(x)/dx=iκg(r)A1(x)exp(iΔk'x)iν2g(r)A2(x).
(2)

Here, Δk'=k2k1,κ=k0r51Ey/2n1n2, is polarization coupling coefficient, wherer51is the electro-optic coefficient, Eyis the external electric field, ν1=k0reff1Ey/2n1,ν2=k0reff2Ey/2n2, reff1and reff2are the effective electro-optic coefficients, g(x) is the structure function of the material. Usually in the one dimensional quasi-matched-phase (QPM) material [21

21. S. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]

], g(x) is a periodic function, whose value is +1 when x falls in the positive domains of the crystal while 1when x falls in the negative domain (Fig. 1(a)). By performing a Fourier transformation of g(x), one finds its Fourier coefficients,
Gm={1iπm[1cos(2πmD)+isin(2πmD)](m0)2D1(m=0),
(3)
whereD=a/Λ is the duty cycle, and a is the thickness of positive domain [20

20. G. L. Zheng, H. C. Wang, and W. L. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Express 14(12), 5535–5540 (2006). [CrossRef] [PubMed]

].

If we takeg(r)=sign{cos[Δk'/m(x+l'θ/Δk)]} (see Ref [19

19. A. Bahabad and A. Arie, “Generation of optical vortex beams by nonlinear wave mixing,” Opt. Express 15(26), 17619–17624 (2007). [CrossRef] [PubMed]

]. for possible experimental realizations for such a phase-twisted modulation) wheresign(x)=x/|x|for nonzero x, thenf(y,z)=l'θ/Δk'and a kind of HPPLN is formed, as shown in Fig. 1 (b). Intuitively, the effects of these two coupling progresses in Fig. 1(c) and 1(d) are different, as the coupling directions are opposite with fixed chirality of HPPLN.

3. Optical vortex adder and substractor

Assuming that the input light is an ordinary light (this could be achieved by putting a horizontal polarizer in front of the HPPLN), the initial condition at x=0 is given byA1=exp(ilθ), A2=0.When the QPM condition is satisfied (Δk=0), the solution can thus be simplified into:

{A1(L)=cos(|κq|L)exp(ilθ)A2(L)=iexp(i(l'+l)θ)sin(|κq|L).
(6)

From Eq. (6), we can see that the output extraordinary light (A2) possesses both the information of ordinary light and structure of material. The condition thatl'=l=0, where the incident light is plane wave, and the nonlinear material is normal PPLN, has extensively investigated; in this case, Eq. (6) is reduced to that in PPLN [20

20. G. L. Zheng, H. C. Wang, and W. L. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Express 14(12), 5535–5540 (2006). [CrossRef] [PubMed]

,22

22. K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009). [CrossRef]

,23

23. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000). [CrossRef]

].

In the following, without the loss of generality, the length of HPPLN is fixed as 2.1cm and the period is fixed as 21μm. We also set m =1, corresponding to a QPM wavelength 1.540μm, andγ51 =32.6 pm/V for LiNbO3 crystal. Without the external electric field, there is no coupling between ordinary light and extraordinary light, and the output light is still the ordinary one with its original TC. However, when the external electric field is applied on HPPLN whose TC isl', the situation changes. Figure 2(a)
Fig. 2 (a) Phase distributions of incident ordinary light(first column) and output extraordinary light(column 2-4) with external electric field applied. The HPPLN works as an optical vortex adder. (b) Phase distributions of incident extraordinary light (first column) and the output ordinary light with external electric field applied (columns 2-4). The HPPLN works as an optical vortex substractor. lis the TC of incident light, and l'the TC of HPPLN.
shows the phase distributions of incident ordinary light and the output extraordinary light. The first row shows the phase distributions of incident ordinary lights with different TC identified by l. The second, third and fourth row show the phase distribution of output extraordinary light from HPPLN withl'=1,2,3, respectively. We can see that the TC of output extraordinary light is given byl+l'. Hence we achieve a kind of optical vortex adder controlled by external electric field, through which the helical poled property of material could be added to the light. We note that this method can be used to generate optical vortex from non-vortex beam and change the TC of already-present optical vortex.

If the input light is an extraordinary light which can be realized, for example, by putting a vertical polarizer in front of the HPPLN, the initial condition at x = 0 is given byA1=0,A2=exp(ilθ). When the QPM condition is satisfied, the solution is be simplified to:

{A1(L)=iexp(i(ll')θ)sin(|κq|L)A2(L)=cos(|κq|L)exp(ilθ).
(7)

From Eq. (7), one finds that the output ordinary light possesses the information of incident extraordinary light and structure of material. Figure 2(b) plots the phase distributions of incident extraordinary light and output ordinary light. The first row shows the phase distributions of incident extraordinary lights with different TC identified by l. The second, third and fourth row show the phase distribution of output ordinary light from HPPLN withl'=1,2,3, respectively. One finds that the TC of output ordinary light is determined byll'. Hence we achieve a kind of optical vortex substractor controlled by external electric field, through which the helical poled property of material could be used to substract the TC of the incoming light.

4. Discussion

The coupling between ordinary and extraordinary light is controlled by external electric field. When the ordinary light is launched into the HPPLN, the amplitude of extraordinary light coupled from ordinary light is controlled by external electric field, as shown in Fig. 3(a)
Fig. 3 (a) The normalized light intensity of output ordinary and extraordinary lights controlled by external electric field. (b)The averaged OAM of output light beam passing through the HPPLN with different TC controlled by external electric field.
. We can see that, when the external electric field rises to 0.831kV/cm, the ordinary vortex light with TC l can be fully transferred to extraordinary vortex light with TCl+l'. Although the OAM of each photon in extraordinary light is given by(l+l'), for the total light beam, the averaged OAM is given by(N0lo+Nele)/(N0+Ne), whereN0andNeare numbers of extraordinary photons and ordinary photons, respectively. Note that the averaged OAM can be controlled by the external voltage, as shown in Fig. 3(b), where the dependence of the averaged OAM on the external electric field is plotted for the incoming vortex-less beam. One observes that the averaged OAM of the resulting light continuously increases with the increase of external electric field, and a maximum value of averaged OAM (i.e., (l+l')) is achieved under a suitable electric field when the whole incoming beam is fully transferred into extraordinary beam. Thus, our system can be used in a highly tunable optical spanners [24

24. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997). [CrossRef] [PubMed]

] where the torques due to the transfer of OAM of photons into particles can be controlled by the external field.

Experimentally, a possible solution for constructing such HPPLN is by lapping and polishing electric-field poled ferroelectric materials into thin χ(2)-modulated planar plates, which has been reduced to the thickness as thin as 6.2μm [25

25. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn: LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett. 17(5), 1049–1051 (2005). [CrossRef]

], and stacking them together [19

19. A. Bahabad and A. Arie, “Generation of optical vortex beams by nonlinear wave mixing,” Opt. Express 15(26), 17619–17624 (2007). [CrossRef] [PubMed]

]. Compared to other means of nonlinear modulation to optical vortex [15

15. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996). [CrossRef] [PubMed]

,19

19. A. Bahabad and A. Arie, “Generation of optical vortex beams by nonlinear wave mixing,” Opt. Express 15(26), 17619–17624 (2007). [CrossRef] [PubMed]

], the intensity of optical vortex in our scheme could be much lower because the coupling between ordinary light and extraordinary light is just determined by external electric field. Hence this method can be used to modulate low intensity light or single photon in high dimensional quantum communication system [26

26. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001). [CrossRef]

] as an optical vortex modulator. Since our method is based on electro-optics effect, it can operate accurately and stably at a high speed up to a multi-gigahertz region [27

27. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

]. In addition, due to their different polarized directions, the output optical vortices with different TC are readily to be separated with the help of polarizing beam splitter or analyzer, which seems more convenient than the method using complex spatial modulation technique [28

28. G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010). [CrossRef]

]. Meanwhile, in our scheme, the total OAM of light beam is controlled by the external voltage, which implies that the torque acted on particle is highly tunable, thus this method takes some advantages over traditional optical tweezers [4

4. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]

,5

5. G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007). [CrossRef] [PubMed]

].

5. Conclusion

In summary, we have proposed a kind of external voltage-controlled optical vortex converter in HPPLN based on electro-optic effect. According to different incident condition, the HPPLN can be used as a topological charge adder or a substractor. The converter features highly voltage-afforded tunability and thus may serve as a promising candidate for the vortex generation and transformations in diverse applications.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 61078009), the National Basic Research Program “973” of China (2007CB307000 and 2011CB808101), the Foundation for Development of Science and Technology of Shanghai (Grant No. 10JC1407200), and the Open Fund of the State Key Laboratory of High Field Laser Physics.

References

1.

S. Barnett, “Optical angular-momentum flux,” J. Opt. B Quantum Semiclassical Opt. 4(2), S7– S16 (2002). [CrossRef]

2.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936). [CrossRef]

3.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]

4.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]

5.

G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007). [CrossRef] [PubMed]

6.

R. J. Voogd, M. Singh, S. F. Pereira, A. S. van de Nes, and J. J. M. Braat, “The use of orbital angular momentum of light beams for super-high density optical data storage,” in OSA Annual Meeting FTuG14(Optical Society of America, Rochester, New York, 2004).

7.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003). [CrossRef] [PubMed]

8.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007). [CrossRef]

9.

G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004). [CrossRef] [PubMed]

10.

M. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993). [CrossRef]

11.

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992). [CrossRef] [PubMed]

12.

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994). [CrossRef]

13.

N. Heckenberg, R. McDuff, C. Smith, H. Rubinsztein-Dunlop, and M. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24(9), S951– S962 (1992). [CrossRef]

14.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006). [CrossRef] [PubMed]

15.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996). [CrossRef] [PubMed]

16.

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997). [CrossRef]

17.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999). [CrossRef]

18.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef] [PubMed]

19.

A. Bahabad and A. Arie, “Generation of optical vortex beams by nonlinear wave mixing,” Opt. Express 15(26), 17619–17624 (2007). [CrossRef] [PubMed]

20.

G. L. Zheng, H. C. Wang, and W. L. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Express 14(12), 5535–5540 (2006). [CrossRef] [PubMed]

21.

S. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]

22.

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009). [CrossRef]

23.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000). [CrossRef]

24.

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997). [CrossRef] [PubMed]

25.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn: LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett. 17(5), 1049–1051 (2005). [CrossRef]

26.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001). [CrossRef]

27.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

28.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010). [CrossRef]

OCIS Codes
(160.2100) Materials : Electro-optical materials
(190.0190) Nonlinear optics : Nonlinear optics
(080.4865) Geometric optics : Optical vortices

ToC Category:
Optical Devices

History
Original Manuscript: April 8, 2011
Revised Manuscript: May 10, 2011
Manuscript Accepted: May 10, 2011
Published: June 1, 2011

Citation
Linghao Tian, Fangwei Ye, and Xianfeng Chen, "Optical vortex converter with helical-periodically poled ferroelectric crystal," Opt. Express 19, 11591-11596 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11591


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Barnett, “Optical angular-momentum flux,” J. Opt. B Quantum Semiclassical Opt. 4(2), S7– S16 (2002). [CrossRef]
  2. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936). [CrossRef]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  5. G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007). [CrossRef] [PubMed]
  6. R. J. Voogd, M. Singh, S. F. Pereira, A. S. van de Nes, and J. J. M. Braat, “The use of orbital angular momentum of light beams for super-high density optical data storage,” in OSA Annual Meeting FTuG14(Optical Society of America, Rochester, New York, 2004).
  7. A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003). [CrossRef] [PubMed]
  8. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007). [CrossRef]
  9. G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004). [CrossRef] [PubMed]
  10. M. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993). [CrossRef]
  11. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992). [CrossRef] [PubMed]
  12. M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994). [CrossRef]
  13. N. Heckenberg, R. McDuff, C. Smith, H. Rubinsztein-Dunlop, and M. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24(9), S951– S962 (1992). [CrossRef]
  14. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006). [CrossRef] [PubMed]
  15. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996). [CrossRef] [PubMed]
  16. J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997). [CrossRef]
  17. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999). [CrossRef]
  18. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef] [PubMed]
  19. A. Bahabad and A. Arie, “Generation of optical vortex beams by nonlinear wave mixing,” Opt. Express 15(26), 17619–17624 (2007). [CrossRef] [PubMed]
  20. G. L. Zheng, H. C. Wang, and W. L. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Express 14(12), 5535–5540 (2006). [CrossRef] [PubMed]
  21. S. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]
  22. K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009). [CrossRef]
  23. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000). [CrossRef]
  24. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997). [CrossRef] [PubMed]
  25. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn: LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett. 17(5), 1049–1051 (2005). [CrossRef]
  26. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001). [CrossRef]
  27. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  28. G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited