OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 13 — Jun. 20, 2011
  • pp: 12490–12495
« Show journal navigation

Second harmonic generation of swift carbon ion irradiated Nd:GdCOB waveguides

Yingying Ren, Yuechen Jia, Feng Chen, Qingming Lu, Sh. Akhmadaliev, and Shengqiang Zhou  »View Author Affiliations


Optics Express, Vol. 19, Issue 13, pp. 12490-12495 (2011)
http://dx.doi.org/10.1364/OE.19.012490


View Full Text Article

Acrobat PDF (1050 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the second harmonic generation at ~532 nm of optical waveguides in Nd:GdCOB produced by swift carbon ion irradiation. The fabricated waveguide shows good guiding property. Under pump of ~1064-nm fundamental light, the optical conversion efficiency of the frequency doubling is 0.48% W−1 and 6.8% W−1 for continuous wave and pulsed laser beams, respectively.

© 2011 OSA

1. Introduction

Energetic ion beams could modify the networks of optical materials and induce refractive index changes in certain regions [12

12. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK 1994).

16

16. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002). [CrossRef]

]. Ion implantation has been successfully used to produce waveguide structures in more than 70 optical materials [13

13. F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007). [CrossRef]

,14

14. F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008). [CrossRef]

]. The normal ion implantation technique utilizes H or He ions with energies from several hundred keV up to 3 MeV, to create a lower-index optical barrier at the end of ion range (mainly depending on the nuclear damage contribution), constructing guiding layer between the barrier and air cladding [17

17. E. Flores-Romero, G. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12(10), 2264–2269 (2004). [CrossRef] [PubMed]

,18

18. Y. Tan, F. Chen, D. Jaque, W. L. Gao, H. J. Zhang, J. G. Solé, and H. J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009). [CrossRef] [PubMed]

]. Recently swift heavy ion irradiation (with electronic stopping power S e of more than 1 MeV/amu) has emerged to be another efficient method to fabricate waveguides in optical materials [19

19. P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007). [CrossRef]

27

27. A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008). [CrossRef] [PubMed]

]. Different from the normal ion implantation, the swift ion beams modify the original lattices mainly by electronic damage instead of nuclear collisions. Successful examples of swift heavy ion irradiate waveguides include lithium niobate (LiNbO3) and Nd:YAG. In these cases, high-quality waveguides were used to achieve electrooptic modulation or integrated lasers [23

23. Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010). [CrossRef] [PubMed]

,24

24. Y. Ren, N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19(6), 5522–5527 (2011). [CrossRef] [PubMed]

,27

27. A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008). [CrossRef] [PubMed]

].

Waveguides have been fabricated in GdCOB crystals by He ion implantation for blue light generation [28

28. A. Boudrioua, J. C. Loulergue, P. Moretti, B. Jacquier, G. Aka, and D. Vivien, “Second-harmonic generation in He+-implanted gadolinium calcium oxoborate planar waveguides,” Opt. Lett. 24(18), 1299–1301 (1999). [CrossRef]

,29

29. B. Vincent, A. Boudrioua, J. C. Loulergue, P. Moretti, S. Tascu, B. Jacquier, G. Aka, and D. Vivien, “Channel waveguides in Ca4GdO(BO3)3 fabricated by He+ implantation for blue-light generation,” Opt. Lett. 28(12), 1025–1027 (2003). [CrossRef] [PubMed]

]. However, the SHG conversion efficiency was relatively low, partly due to the decrease of nonlinear coefficients induced by the incident ions. Recently, we found that the nonlinear optical responses may be enhanced in swift heavy ion irradiated waveguides [30

30. N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow fuence swift heavy ion irradiation in lithium crystal,” J. Phys. D 44(10), 105103 (2011). [CrossRef]

]. With such advantage one could achieve better SHG performance of the nonlinear waveguides.

In this work, we report, for the first time to our knowledge, the fabrication of Nd:GdCOB planar waveguides by using 17 MeV C5+ ion irradiation. The SHG at 532 nm has been realized in the waveguides under both continuous wave (cw) and pulsed laser configurations.

2. Experiments in details

The 8 at.% Nd-doped GdCOB crystal was grown by Czochralski method. It was polished and cut to dimensions of 6×4×2 mm3. The crystal was designed to achieve the Type I phase matching of a fundamental light beam at 1064 nm propagating at the x-z principle plane. By using the 3MV tandem accelerator at Helmholtz-Zentrum Dresden-Rossendorf, Germany, 17 MeV C5+ ions at fluence 2×1014 ions/cm2 were irradiated on one of the sample surfaces (6×4 mm2). The ion current density was kept at a low level (around 6-8 nA/cm2) to avoid the heating and charging of the sample.

Figure 1
Fig. 1 Experimental set-up for SHG experiments: P, polarizer; L1 and L2, convex lens; Obj, microscope objective lens; M, mirror (HR at 1064 nm, HT at 532 nm).
shows the schematic plot of the experimental setup for SHG in Nd:GdCOB waveguide. The waveguide laser was excited by utilizing a typical end-face coupling system. As the fundamental waves, a polarized continuous wave (cw) or a pulsed laser beam (pulse width of 11.05 ns, pulse energy of ~80 μJ, frequency of ~6 kHz, maximum average power of 480 mW) at ~1064 nm was focused and coupled into the waveguide using a convex lens (focal length f = 25 mm). The SH signals at ~532 nm was collected with a 20× microscope objective lens (N.A. = 0.4). After separating from the leaked fundamental laser beam by a mirror with high-reflection at 1064 nm (HR, R>99%) and high-transmission at 532 nm (HT, T = 70%), the generated green light was aggregated with another convex lens and then detected by the spectrometer, CCD camera and powermeter.

3. Results and discussion

In addition, the waveguide loss has been estimated to be ~8dB/cm by using the back-reflection method [35

35. R. Ramponi, R. Osellame, and M. Marangoni, “Two Straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002). [CrossRef]

]. After the annealing treatment at 260°C for 30 min the waveguide loss values have no obvious changes. If the propagation loss could be reduced to 1dB/cm by optimization of the post-annealing treatment conditions, the conversion efficiency η for the cw and pulsed SHG from the Nd:GdCOB waveguides could be increased to be 1.3%W−1 and 18%W−1, respectively. Nevertheless, further investigation could be focused on the self-frequency-doubling of the Nd:GdCOB waveguides with acceptable guiding qualities.

4. Summary

The first Nd:GdCOB optical planar waveguide has been fabricated by swift C5+-ion irradiation. By using 1064-nm fundamental wave pump, we have observed the waveguide SHG at 532 nm through the Type I phase matching of TM0 ω→TE0 . The maximum output powers of SH signals are ~0.53 mW (at pump of 334.6 mW) and ~0.72 mW (at pump of ~102.7 mW) for the cw and pulsed beams, resulting in the conversion efficiencies of 0.48%W−1 and 6.8%W−1, respectively. The obtained data suggest that the swift C ion irradiated Nd:GdCOB waveguides may be potential candidates as the integrated self-frequency-doubling light sources.

Acknowledgments

This work is supported by the National Nature Science Foundation of China (No. 10925524), the Program for New-Century Excellent Young Talents in Universities of China (No. NCET-08-0331), and the 973 Project (No. 2010CB832906). S.Z. acknowledges the funding by the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF-VH-NG-713).

References and links

1.

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997). [CrossRef]

2.

F. Augé, F. Mougel, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, in Advanced Solid State Lasers, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 210.

3.

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

4.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997). [CrossRef]

5.

C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000). [CrossRef]

6.

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001). [CrossRef]

7.

J. Wang, H. Zhang, Z. Wang, H. Yu, N. Zong, C. Ma, Z. Xu, and M. Jiang, “Watt-level self-frequency-doubling Nd:GdCOB lasers,” Opt. Express 18(11), 11058–11062 (2010). [CrossRef] [PubMed]

8.

E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).

9.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007). [CrossRef]

10.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998). [CrossRef]

11.

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985). [CrossRef]

12.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK 1994).

13.

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007). [CrossRef]

14.

F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008). [CrossRef]

15.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009). [CrossRef]

16.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002). [CrossRef]

17.

E. Flores-Romero, G. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12(10), 2264–2269 (2004). [CrossRef] [PubMed]

18.

Y. Tan, F. Chen, D. Jaque, W. L. Gao, H. J. Zhang, J. G. Solé, and H. J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009). [CrossRef] [PubMed]

19.

P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007). [CrossRef]

20.

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011). [CrossRef]

21.

A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006). [CrossRef]

22.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007). [CrossRef] [PubMed]

23.

Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010). [CrossRef] [PubMed]

24.

Y. Ren, N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19(6), 5522–5527 (2011). [CrossRef] [PubMed]

25.

J. Manzano, J. Olivares, F. Agullo-Lopez, M. L. Crespillo, A. Morono, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268(19), 3147–3150 (2010). [CrossRef]

26.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005). [CrossRef]

27.

A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008). [CrossRef] [PubMed]

28.

A. Boudrioua, J. C. Loulergue, P. Moretti, B. Jacquier, G. Aka, and D. Vivien, “Second-harmonic generation in He+-implanted gadolinium calcium oxoborate planar waveguides,” Opt. Lett. 24(18), 1299–1301 (1999). [CrossRef]

29.

B. Vincent, A. Boudrioua, J. C. Loulergue, P. Moretti, S. Tascu, B. Jacquier, G. Aka, and D. Vivien, “Channel waveguides in Ca4GdO(BO3)3 fabricated by He+ implantation for blue-light generation,” Opt. Lett. 28(12), 1025–1027 (2003). [CrossRef] [PubMed]

30.

N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow fuence swift heavy ion irradiation in lithium crystal,” J. Phys. D 44(10), 105103 (2011). [CrossRef]

31.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986). [CrossRef]

32.

J. F. Ziegler, computer code, SRIM http://www.srim.org.

33.

D. Fluck and P. Günter, “Second-Harmonic Generation in Potassium Niobate Waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 122–131 (2000). [CrossRef]

34.

D. N. Nikogosyan, Nonlinear optical crystals: a complete survey (Springer, New York, 2005).

35.

R. Ramponi, R. Osellame, and M. Marangoni, “Two Straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002). [CrossRef]

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7390) Optical devices : Waveguides, planar
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Integrated Optics

History
Original Manuscript: April 29, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 7, 2011
Published: June 13, 2011

Citation
Yingying Ren, Yuechen Jia, Feng Chen, Qingming Lu, Sh. Akhmadaliev, and Shengqiang Zhou, "Second harmonic generation of swift carbon ion irradiated Nd:GdCOB waveguides," Opt. Express 19, 12490-12495 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12490


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997). [CrossRef]
  2. F. Augé, F. Mougel, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, in Advanced Solid State Lasers, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 210.
  3. G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).
  4. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997). [CrossRef]
  5. C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000). [CrossRef]
  6. D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001). [CrossRef]
  7. J. Wang, H. Zhang, Z. Wang, H. Yu, N. Zong, C. Ma, Z. Xu, and M. Jiang, “Watt-level self-frequency-doubling Nd:GdCOB lasers,” Opt. Express 18(11), 11058–11062 (2010). [CrossRef] [PubMed]
  8. E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).
  9. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007). [CrossRef]
  10. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998). [CrossRef]
  11. G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985). [CrossRef]
  12. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK 1994).
  13. F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007). [CrossRef]
  14. F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008). [CrossRef]
  15. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009). [CrossRef]
  16. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002). [CrossRef]
  17. E. Flores-Romero, G. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12(10), 2264–2269 (2004). [CrossRef] [PubMed]
  18. Y. Tan, F. Chen, D. Jaque, W. L. Gao, H. J. Zhang, J. G. Solé, and H. J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009). [CrossRef] [PubMed]
  19. P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007). [CrossRef]
  20. F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011). [CrossRef]
  21. A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006). [CrossRef]
  22. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007). [CrossRef] [PubMed]
  23. Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010). [CrossRef] [PubMed]
  24. Y. Ren, N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19(6), 5522–5527 (2011). [CrossRef] [PubMed]
  25. J. Manzano, J. Olivares, F. Agullo-Lopez, M. L. Crespillo, A. Morono, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268(19), 3147–3150 (2010). [CrossRef]
  26. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005). [CrossRef]
  27. A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008). [CrossRef] [PubMed]
  28. A. Boudrioua, J. C. Loulergue, P. Moretti, B. Jacquier, G. Aka, and D. Vivien, “Second-harmonic generation in He+-implanted gadolinium calcium oxoborate planar waveguides,” Opt. Lett. 24(18), 1299–1301 (1999). [CrossRef]
  29. B. Vincent, A. Boudrioua, J. C. Loulergue, P. Moretti, S. Tascu, B. Jacquier, G. Aka, and D. Vivien, “Channel waveguides in Ca4GdO(BO3)3 fabricated by He+ implantation for blue-light generation,” Opt. Lett. 28(12), 1025–1027 (2003). [CrossRef] [PubMed]
  30. N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow fuence swift heavy ion irradiation in lithium crystal,” J. Phys. D 44(10), 105103 (2011). [CrossRef]
  31. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986). [CrossRef]
  32. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  33. D. Fluck and P. Günter, “Second-Harmonic Generation in Potassium Niobate Waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 122–131 (2000). [CrossRef]
  34. D. N. Nikogosyan, Nonlinear optical crystals: a complete survey (Springer, New York, 2005).
  35. R. Ramponi, R. Osellame, and M. Marangoni, “Two Straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited