OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 12978–12983
« Show journal navigation

Search for Hermite-Gauss mode rotation in cholesteric liquid crystals

W. Löffler, M. P. van Exter, G. W. ’t Hooft, G. Nienhuis, D. J. Broer, and J. P. Woerdman  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 12978-12983 (2011)
http://dx.doi.org/10.1364/OE.19.012978


View Full Text Article

Acrobat PDF (1703 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In theory, there are analogous transformations of light’s spin and orbital angular momentum [Allen and Padgett, J. Mod. Opt. 54, 487 (2007)]; however, none have been observed experimentally yet. In particular, it is unknown if there exists for the orbital angular momentum of light an effect analogous to the spin angular momentum-based optical rotation; this would manifest itself as a rotation of the corresponding Hermite-Gauss mode. Here we report an experimental search for this effect in a cholesteric liquid crystal polymer, using strongly focussed, spin-orbit coupled light. We find that the relative phase velocities of the orbital modes constituting the Hermite-Gauss mode agree to within 10−5.

© 2011 OSA

1. Introduction

Before addressing our experimental system we discuss the question: What is known about the interaction of OAM with matter in general? The first investigations along this line dealt with the mechanical angular momentum transfer of OAM light to astigmatic objects [6

6. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]

8

8. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]

]. This has led to important developments in optical tweezers [6

6. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]

], and is well understood. The situation is quite different when we deal with the transfer of OAM to free atoms or molecules; this topic has been addressed in a number of theoretical papers [9

9. S. J. van Enk and G. Nienhuis, “Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields,” J. Mod. Opt. 41, 963–977 (1994). [CrossRef]

16

16. V. Klimov, D. Bloch, M. Ducloy, and J. R. R. Leite, “Detecting photons in the dark region of Laguerre-Gauss beams,” Opt. Express 17, 9718–9723 (2009). [CrossRef] [PubMed]

] and one experimental paper [17

17. F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: an experimental investigation,” Phys. Rev. A 71, 055401 (2005). [CrossRef]

]. Here, there is disagreement between the theory papers; some [12

12. R. Jáuregui, “Rotational effects of twisted light on atoms beyond the paraxial approximation,” Phys. Rev. A 70, 033415 (2004). [CrossRef]

, 14

14. A. Alexandrescu, D. Cojoc, and E. D. Fabrizio, “Mechanism of angular momentum exchange between molecules and laguerre-gaussian beams,” Phys. Rev. Lett. 96, 243001 (2006). [CrossRef] [PubMed]

] predict that effects of OAM of light on an atom or a molecule can be observed (in the linear regime and within the electric-dipole approximation) whereas others, including the only experimental paper [17

17. F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: an experimental investigation,” Phys. Rev. A 71, 055401 (2005). [CrossRef]

], do not find such effects [10

10. M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89, 143601 (2002). [CrossRef] [PubMed]

, 11

11. L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B 4, S66 (2002). [CrossRef]

, 13

13. D. L. Andrews, L. C. Dávila Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237, 133–139 (2004). [CrossRef]

, 15

15. R. Grinter, “Photon angular momentum: selection rules and multipolar transition moments,” J. Phys. B 41, 095001 (2008). [CrossRef]

]. One issue here is the discrepancy in the lateral dimension between the OAM mode on one side, and the atomic or molecular electron wavepacket on the other. This situation is different in the interaction of OAM light with macroscopic quantum objects, i.e., atomic and polaritonic condensates [18

18. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006). [CrossRef] [PubMed]

, 19

19. D. Sanvitto, F. M. Marchetti, M. H. Szymanska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaitre, J. Bloch, C. Tejedor, and L. Vina, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys. 6, 527–533 (2010). [CrossRef]

], or, probably, using ultra-short wavelength OAM light and conventional atoms or molecules [20

20. A. Picón, J. Mompart, J. R. V. de Aldana, L. Plaja, G. F. Calvo, and L. Roso, “Photoionization with orbital angular momentum beams,” Opt. Express 18, 3660–3671 (2010). [CrossRef] [PubMed]

]. However, in none of these systems, the interaction is per se sensitive to the handedness of the OAM, which is key to find the OAM analogue to optical activity.

In the present paper we test experimentally for such behaviour, i.e., if the propagation depends on the handedness of the OAM, in a polymerized cholesteric liquid crystal (CLC). We chose this system because a CLC has a gigantic optical activity due to Bragg-like structural resonances (see, e.g., [21

21. I. Khoo, Liquid Crystals, Wiley series in pure and applied optics (Wiley-Interscience, 2007). [CrossRef]

]). It is in particular interesting to consider interaction of a CLC with OAM light, since the helical alignment of the director in the cholesteric liquid crystal and the helical wavefronts in OAM light with = ±1 show similar symmetry.

In a stratified multilayer CLC (see inset Fig. 1), the optically anisotropic molecules are helically arranged. In every plane perpendicular to the substrate, the directors are aligned (due to rubbing of the substrates), and the director of adjacent LC planes is rotated a little due to molecular chirality, finally forming a helical orientation of the molecules. If the pitch of the director-helix is of the order of the optical wavelength, a polarization-selective Bragg-type reflection band appears [22

22. W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995). [CrossRef]

]: The portion of the incoming light where the polarization handedness matches that of the CLC is reflected while the other is transmitted. These polarization-dependent optical properties can be explained on a macroscopic level using spatial dispersion, i.e., non-vanishing imaginary antisymmetric part (gyration) of the effective dielectric tensor [23

23. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, 1975), Vol. 8.

]. This is well known in molecular optical activity, which can be seen as a consequence of molecular spatial dispersion. In optically active media, these atomic-scale inhomogeneities have chiral structure and give rise to a dielectric tensor with non-zero gyration. Spatial dispersion is also well known in photonic structures with inhomogeneities on the scale of the optical wavelength, e.g., photonic crystals (see, e.g., [24

24. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010). [CrossRef]

]). In this case, spatial dispersion does not originate from coherent oscillation of electrons in the unit cell, which has a size of order λ, but from multiple reflection, retardation, and interference of light. Well-known effects in this category in photonic crystals are the superprism effect [25

25. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998). [CrossRef]

] and negative refraction [26

26. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003). [CrossRef] [PubMed]

], and eventually, the optical activity of cholesteric liquid crystals like the one used here.

Fig. 1 Cholesteric liquid crystal. (a) Optical properties: If the wavelength of the incident light matches the pitch p 0 of the cholesteric liquid crystal (black bar), the reflected (transmitted) light has the same (opposite) handedness as the CLC. (b) Experimentally measured optical rotation (in transmission, normal incidence) of linear polarized light, showing the expected dispersive behavior around the resonant reflection band (gray box).

In analogy to optical rotation measurements [2

2. L. Allen and M. Padgett, “Equivalent geometric transformations for spin and orbital angular momentum of light,” J. Mod. Opt. 54, 487–491 (2007). [CrossRef]

], we measure the relative phase delay of OAM light with different handedness after passing through the CLC sample. This can be done simply by observing the rotation of the nodal line of a HG 1,0 Hermite-Gaussian beam [2

2. L. Allen and M. Padgett, “Equivalent geometric transformations for spin and orbital angular momentum of light,” J. Mod. Opt. 54, 487–491 (2007). [CrossRef]

], since this orientation ϕ depends on the relative phase of its components in the LG mode decomposition:
cos(ϕ)|HG1,0+sin(ϕ)|HG0,1eiϕ|LG1,0+eiϕ|LG+1,0
(1)
If we introduce in a HG beam a (hypothetical) medium with different effective refractive indices n + and n of the LG ,0 and LG + ,0 modes (n + n for = 1), i.e., providing intermodal dispersion of these modes, the HG mode pattern is rotated. This is the closest possible analogue to conventional linear optical activity.

2. Experimental setting

Fig. 2 Scheme of the experiment. Pol.: linear polarizers; PEM: photo-elastic modulator; SLM: spatial light modulator; PD: photo diode; SMF: single-mode fiber. The CCD is used to record the profile of the transmitted mode.
Fig. 3 Demonstration of the fit algorithm used to determine the nodal line orientation of the Hermite-Gauss type mode: (a) 2D intensity profile; (b) example fit (intensity as a function of CCD column) of a horizontal cross section of this profile; and (c) linear regression (as a function of the CCD row) to find the global angle of this nodal line.

Our sample is a cholesteric liquid crystal polymer where the pitch p 0 (a full 2π rotation of the director, see Fig. 1) is of the order of the optical wavelength [27

27. D. J. Broer and I. Heynderickx, “Three-dimensionally ordered polymer networks with a helicoidal structure,” Macromolecules 23, 2474–2477 (1990). [CrossRef]

, 28

28. R. A. M. Hikmet, J. Lub, and D. J. Broer, “Anisotropic networks formed by photopolymerization of liquid-crystalline molecules,” Adv. Mater. 3, 392–394 (1991). [CrossRef]

], in our case, around 570 nm. The sample consists of a mixture of one chiral and one achiral reactive mesogen, and a photoinitiator for photopolymerization. The molecular layers are aligned at the bottom and top substrate by a rubbed polyimide coating, while the thickness of the film was controlled by using 16 μm spacers. Photopolymerization was initiated in the chiral nematic phase at 85 °C. In the Bragg-type reflection band [22

22. W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995). [CrossRef]

, 29

29. D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970). [CrossRef]

] around λ 0 = n̄p 0 (full width Δλ = p 0Δn, where Δn = |neno|), the circular polarization component, which has the same handedness as the CLC, is reflected, while the other component is transmitted (see Fig. 1). = (no + ne)/2 is the average refractive index; for a non-chiral variant of the LC, the refractive indices at λ = 500nm have been measured to be no ≈ 1.55 and ne ≈ 1.70. Fig. 1b shows the typical dispersion-like optical rotation of the sample with a reflection band at 550–590 nm. The optical rotation is very large: Close to the reflection band, the optical rotation is around 2.3 × 104 degrees/mm, this is very much larger than what is possible in samples with molecular optical activity only. This allows us to use a thin sample and microscopy objectives for focussing.

In strongly focussed light beams, the spin and orbital angular momentum are coupled via spin-orbit interaction. More precisely, in a Laguerre-Gaussian beam, the total angular momentum flux per unit length Jz, normalized to the energy flux per unit length E is given by [30

30. S. M. Barnett and L. Allen, “Orbital angular momentum and nonparaxial light beams,” Opt. Commun. 110, 670–678 (1994). [CrossRef]

]:
JzE=σz+ω+σzω(4/θ022p++1+1)1
(2)
where σz is the spin AM, ω the wave number, and p the azimuthal and radial index of the Laguerre-Gaussian mode, and θ 0 is the half aperture angle of the focussed beam. Eq. (2) follows directly from that in [30

30. S. M. Barnett and L. Allen, “Orbital angular momentum and nonparaxial light beams,” Opt. Commun. 110, 670–678 (1994). [CrossRef]

] using zR=πw02/λ and w 0 = λ/(πθ), where w 0 and zR are the Gaussian beam width and Rayleigh range, respectively. The second term in Eq. (2) is the consequence of spin-orbit coupling, and θ02/4 is a measure of its strength [31

31. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused gaussian beam,” J. Opt. A 10, 115005 (2008). [CrossRef]

]. We use a beam with NA = 0.4, this results in θ02/4=0.05. That is, about 5% of the total angular momentum stems from terms where both the SAM and OAM contribute in a non-separable way.

3. Results and discussion

Finally, Fig. 4 shows our experimental result: Within our experimental accuracy of around 0.05 degree, we cannot find a rotation of the nodal line of the Hermite-Gaussian mode in the non-paraxial regime while passing through the cholesteric liquid crystal. This accuracy is good enough to exclude that the spin-orbit mixed components (5%) of the light mediate Hermite-Gaussian mode rotation via optical rotation (up to 200 degrees, Fig. 1). Similar results were obtained in the paraxial case (not shown). Our experiment tested for intermodal dispersion of OAM modes with different handedness, which is the closest analogy of optical rotation for OAM. In terms of refractive-index difference, our results give an upper limit of |n + n | < 8·10−6 for = 1. Probably this limit could be lowered by using a specially designed superposition of higher-order OAM modes, however, our data analysis method works best for the = ±1 case.

Fig. 4 Measurement of the HG 1,0-mode rotation angle (inset) at different wavelengths for focussed probe light (NA=0.4).

One might believe that this result is to be expected in our case: To rotate the plane-wave decomposition of a focused HG mode, we require k⃗out = R ·k⃗in, where R is a rotation matrix which rotates the wave vector k⃗in around the geometric beam axis. If the medium is translation invariant in the sample plane, in linear optics, such a R can not be constructed. However, this translation symmetry holds only within an effective refractive index model, but not on the atomic scale. Even if the wavelength is much larger than the microscopic length scale of the system (e.g., the crystal lattice constant), the optical properties are influenced by the microscopic structure. This is well known in crystal optics: Within the dipole approximation, cubic crystals should be isotropic, however, many show birefringence due to spatial dispersion. This effect has been predicted by Lorentz in 1878, firstly discovered in [32

32. J. Pastrnak and K. Vedam, “Optical anisotropy of silicon single crystals,” Phys. Rev. B 3, 2567–2571 (1971). [CrossRef]

], and became relevant in UV lithography today [33

33. A. G. Serebryakov and F. Bociort, “Spatial dispersion of crystals as a critical problem for deep uv lithography,” J. Opt. Technol. 70, 566–569 (2003). [CrossRef]

]. It is not clear yet if such structure could allow for OAM-sensitive scattering. Compared to conventional crystals, in our helically-arranged cholesteric liquid crystal polymer, the transverse symmetry is broken on a larger, supramolecular scale. Our results, however, make a OAM-sensitive interaction in a cholesteric system highly unlikely.

It appears, to make a medium react on OAM, that a spatially extended (comparable to the light’s beam waist) coherent response of the medium is required; and evidently the intermolecular dipole-dipole interactions, which explain successfully the physics of liquid crystals, do not suffice. Similarly, the storage of spatial phase information in a classical gas of cold atoms [34

34. J. W. R. Tabosa and D. V. Petrov, “Optical pumping of orbital angular momentum of light in cold cesium atoms,” Phys. Rev. Lett. 83, 4967–4970 (1999). [CrossRef]

] is entirely different from vortex creation in a BEC atomic condensate using OAM light [18

18. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006). [CrossRef] [PubMed]

]. In the first case, only the local phase information is stored (similar to holography), and only in the latter case, a single quantum object carries the OAM information previously carried by the light. A hypothetical medium with OAM-sensitive interaction will need to have a chiral symmetry and give a coherent non-local response on the scale of the beam waist, i.e., a kind of chiral optical antenna. The construction of a medium from such building blocks is even more challenging than the development of metamaterials since the coherence length must be considerably larger here. Therefore, a demonstration should be easiest in the THz or radio-frequency range.

Acknowledgments

We acknowledge fruitful discussions with S. Stallinga (TU Delft) and financial support by NWO and the EU STREP program 255914 (PHORBITECH).

References and links

1.

M. J. Padgett and J. Courtial, “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430–432 (1999). [CrossRef]

2.

L. Allen and M. Padgett, “Equivalent geometric transformations for spin and orbital angular momentum of light,” J. Mod. Opt. 54, 487–491 (2007). [CrossRef]

3.

G. Nienhuis, J. P. Woerdman, and I. Kuščer, “Magnetic and mechanical faraday effects,” Phys. Rev. A 46, 7079–7092 (1992). [CrossRef] [PubMed]

4.

M. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006). [CrossRef] [PubMed]

5.

J. Leach, A. J. Wright, J. B. Götte, J. M. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008). [CrossRef] [PubMed]

6.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]

7.

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997). [CrossRef] [PubMed]

8.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]

9.

S. J. van Enk and G. Nienhuis, “Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields,” J. Mod. Opt. 41, 963–977 (1994). [CrossRef]

10.

M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89, 143601 (2002). [CrossRef] [PubMed]

11.

L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B 4, S66 (2002). [CrossRef]

12.

R. Jáuregui, “Rotational effects of twisted light on atoms beyond the paraxial approximation,” Phys. Rev. A 70, 033415 (2004). [CrossRef]

13.

D. L. Andrews, L. C. Dávila Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237, 133–139 (2004). [CrossRef]

14.

A. Alexandrescu, D. Cojoc, and E. D. Fabrizio, “Mechanism of angular momentum exchange between molecules and laguerre-gaussian beams,” Phys. Rev. Lett. 96, 243001 (2006). [CrossRef] [PubMed]

15.

R. Grinter, “Photon angular momentum: selection rules and multipolar transition moments,” J. Phys. B 41, 095001 (2008). [CrossRef]

16.

V. Klimov, D. Bloch, M. Ducloy, and J. R. R. Leite, “Detecting photons in the dark region of Laguerre-Gauss beams,” Opt. Express 17, 9718–9723 (2009). [CrossRef] [PubMed]

17.

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: an experimental investigation,” Phys. Rev. A 71, 055401 (2005). [CrossRef]

18.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006). [CrossRef] [PubMed]

19.

D. Sanvitto, F. M. Marchetti, M. H. Szymanska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaitre, J. Bloch, C. Tejedor, and L. Vina, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys. 6, 527–533 (2010). [CrossRef]

20.

A. Picón, J. Mompart, J. R. V. de Aldana, L. Plaja, G. F. Calvo, and L. Roso, “Photoionization with orbital angular momentum beams,” Opt. Express 18, 3660–3671 (2010). [CrossRef] [PubMed]

21.

I. Khoo, Liquid Crystals, Wiley series in pure and applied optics (Wiley-Interscience, 2007). [CrossRef]

22.

W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995). [CrossRef]

23.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, 1975), Vol. 8.

24.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010). [CrossRef]

25.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998). [CrossRef]

26.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003). [CrossRef] [PubMed]

27.

D. J. Broer and I. Heynderickx, “Three-dimensionally ordered polymer networks with a helicoidal structure,” Macromolecules 23, 2474–2477 (1990). [CrossRef]

28.

R. A. M. Hikmet, J. Lub, and D. J. Broer, “Anisotropic networks formed by photopolymerization of liquid-crystalline molecules,” Adv. Mater. 3, 392–394 (1991). [CrossRef]

29.

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970). [CrossRef]

30.

S. M. Barnett and L. Allen, “Orbital angular momentum and nonparaxial light beams,” Opt. Commun. 110, 670–678 (1994). [CrossRef]

31.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused gaussian beam,” J. Opt. A 10, 115005 (2008). [CrossRef]

32.

J. Pastrnak and K. Vedam, “Optical anisotropy of silicon single crystals,” Phys. Rev. B 3, 2567–2571 (1971). [CrossRef]

33.

A. G. Serebryakov and F. Bociort, “Spatial dispersion of crystals as a critical problem for deep uv lithography,” J. Opt. Technol. 70, 566–569 (2003). [CrossRef]

34.

J. W. R. Tabosa and D. V. Petrov, “Optical pumping of orbital angular momentum of light in cold cesium atoms,” Phys. Rev. Lett. 83, 4967–4970 (1999). [CrossRef]

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(160.1585) Materials : Chiral media
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Materials

History
Original Manuscript: April 13, 2011
Revised Manuscript: May 27, 2011
Manuscript Accepted: June 2, 2011
Published: June 21, 2011

Citation
W. Löffler, M. P. van Exter, G. W. ’t Hooft, G. Nienhuis, D. J. Broer, and J. P. Woerdman, "Search for Hermite-Gauss mode rotation in cholesteric liquid crystals," Opt. Express 19, 12978-12983 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-12978


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Padgett and J. Courtial, “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430–432 (1999). [CrossRef]
  2. L. Allen and M. Padgett, “Equivalent geometric transformations for spin and orbital angular momentum of light,” J. Mod. Opt. 54, 487–491 (2007). [CrossRef]
  3. G. Nienhuis, J. P. Woerdman, and I. Kuščer, “Magnetic and mechanical faraday effects,” Phys. Rev. A 46, 7079–7092 (1992). [CrossRef] [PubMed]
  4. M. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205–2207 (2006). [CrossRef] [PubMed]
  5. J. Leach, A. J. Wright, J. B. Götte, J. M. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008). [CrossRef] [PubMed]
  6. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]
  7. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997). [CrossRef] [PubMed]
  8. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  9. S. J. van Enk and G. Nienhuis, “Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields,” J. Mod. Opt. 41, 963–977 (1994). [CrossRef]
  10. M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89, 143601 (2002). [CrossRef] [PubMed]
  11. L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B 4, S66 (2002). [CrossRef]
  12. R. Jáuregui, “Rotational effects of twisted light on atoms beyond the paraxial approximation,” Phys. Rev. A 70, 033415 (2004). [CrossRef]
  13. D. L. Andrews, L. C. Dávila Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237, 133–139 (2004). [CrossRef]
  14. A. Alexandrescu, D. Cojoc, and E. D. Fabrizio, “Mechanism of angular momentum exchange between molecules and laguerre-gaussian beams,” Phys. Rev. Lett. 96, 243001 (2006). [CrossRef] [PubMed]
  15. R. Grinter, “Photon angular momentum: selection rules and multipolar transition moments,” J. Phys. B 41, 095001 (2008). [CrossRef]
  16. V. Klimov, D. Bloch, M. Ducloy, and J. R. R. Leite, “Detecting photons in the dark region of Laguerre-Gauss beams,” Opt. Express 17, 9718–9723 (2009). [CrossRef] [PubMed]
  17. F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: an experimental investigation,” Phys. Rev. A 71, 055401 (2005). [CrossRef]
  18. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006). [CrossRef] [PubMed]
  19. D. Sanvitto, F. M. Marchetti, M. H. Szymanska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaitre, J. Bloch, C. Tejedor, and L. Vina, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys. 6, 527–533 (2010). [CrossRef]
  20. A. Picón, J. Mompart, J. R. V. de Aldana, L. Plaja, G. F. Calvo, and L. Roso, “Photoionization with orbital angular momentum beams,” Opt. Express 18, 3660–3671 (2010). [CrossRef] [PubMed]
  21. I. Khoo, Liquid Crystals , Wiley series in pure and applied optics (Wiley-Interscience, 2007). [CrossRef]
  22. W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995). [CrossRef]
  23. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, 1975), Vol. 8.
  24. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010). [CrossRef]
  25. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998). [CrossRef]
  26. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003). [CrossRef] [PubMed]
  27. D. J. Broer and I. Heynderickx, “Three-dimensionally ordered polymer networks with a helicoidal structure,” Macromolecules 23, 2474–2477 (1990). [CrossRef]
  28. R. A. M. Hikmet, J. Lub, and D. J. Broer, “Anisotropic networks formed by photopolymerization of liquid-crystalline molecules,” Adv. Mater. 3, 392–394 (1991). [CrossRef]
  29. D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970). [CrossRef]
  30. S. M. Barnett and L. Allen, “Orbital angular momentum and nonparaxial light beams,” Opt. Commun. 110, 670–678 (1994). [CrossRef]
  31. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused gaussian beam,” J. Opt. A 10, 115005 (2008). [CrossRef]
  32. J. Pastrnak and K. Vedam, “Optical anisotropy of silicon single crystals,” Phys. Rev. B 3, 2567–2571 (1971). [CrossRef]
  33. A. G. Serebryakov and F. Bociort, “Spatial dispersion of crystals as a critical problem for deep uv lithography,” J. Opt. Technol. 70, 566–569 (2003). [CrossRef]
  34. J. W. R. Tabosa and D. V. Petrov, “Optical pumping of orbital angular momentum of light in cold cesium atoms,” Phys. Rev. Lett. 83, 4967–4970 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited