## Effect of the number of stacking layers on the characteristics of quantum-dash lasers |

Optics Express, Vol. 19, Issue 14, pp. 13378-13385 (2011)

http://dx.doi.org/10.1364/OE.19.013378

Acrobat PDF (1083 KB)

### Abstract

A theoretical model is evaluated to investigate the characteristics of InAs/InP quantum dash (Qdash) lasers as a function of the stack number. The model is based on multimode carrier-photon rate equations and accounts for both inhomogeneous and homogeneous broadenings of the optical gain. The numerical results show a non monotonic increase in the threshold current density and a red shift in the lasing wavelength on increasing the stack number, which agrees well with reported experimental results. This observation may partly be attributed to an increase of inhomogeneity in the active region.

© 2011 OSA

## 1. Introduction

## 2. Theoretical model

8. M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. **40**(4), 364–373 (2004). [CrossRef]

9. Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. **42**(11–12), 1224–1232 (2006). [CrossRef]

10. H. Dery and G. Eisenstein, “Self-consistent rate equations of self-assembly quantum wire lasers,” IEEE J. Quantum Electron. **40**(10), 1398–1409 (2004). [CrossRef]

11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B **61**(11), 7595–7603 (2000). [CrossRef]

12. K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. **43**(9), 810–816 (2007). [CrossRef]

13. F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. **45**(7), 872–878 (2009). [CrossRef]

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. **11**(5), 1015–1026 (2005). [CrossRef]

*N*intra-dash energy levels is considered in each dash ensemble characterized by the DOS function

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. **11**(5), 1015–1026 (2005). [CrossRef]

11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B **61**(11), 7595–7603 (2000). [CrossRef]

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. **11**(5), 1015–1026 (2005). [CrossRef]

**11**(5), 1015–1026 (2005). [CrossRef]

*I*is the current injection,

11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B **61**(11), 7595–7603 (2000). [CrossRef]

**11**(5), 1015–1026 (2005). [CrossRef]

**61**(11), 7595–7603 (2000). [CrossRef]

**11**(5), 1015–1026 (2005). [CrossRef]

**61**(11), 7595–7603 (2000). [CrossRef]

8. M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. **40**(4), 364–373 (2004). [CrossRef]

9. Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. **42**(11–12), 1224–1232 (2006). [CrossRef]

**61**(11), 7595–7603 (2000). [CrossRef]

**11**(5), 1015–1026 (2005). [CrossRef]

15. R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. **14**(6), 735–737 (2002). [CrossRef]

*nm*and width of 20

*nm*constitutes the active region with volume

*nm*thick with a cross section dash density of

**11**(5), 1015–1026 (2005). [CrossRef]

15. R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. **14**(6), 735–737 (2002). [CrossRef]

**61**(11), 7595–7603 (2000). [CrossRef]

**11**(5), 1015–1026 (2005). [CrossRef]

**11**(5), 1015–1026 (2005). [CrossRef]

**61**(11), 7595–7603 (2000). [CrossRef]

**11**(5), 1015–1026 (2005). [CrossRef]

## 3. Numerical results

5. D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi **6**(10), 2217–2221 (2009) (c). [CrossRef]

6. D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. **93**(16), 161104 (2008). [CrossRef]

*N*= 50 rather than calculating the accurate energy states of the Qdashes. An almost linear increase in

*Γ*, and the inhomogeneous broadening. Increase in

*Γ*(due to increase in

6. D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. **93**(16), 161104 (2008). [CrossRef]

16. T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. **13**(5), 1273–1278 (2007). [CrossRef]

1. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. **13**(1), 111–124 (2007). [CrossRef]

5. D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi **6**(10), 2217–2221 (2009) (c). [CrossRef]

16. T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. **13**(5), 1273–1278 (2007). [CrossRef]

*Γ*accordingly (0.009 per layer) and therefore, probably, does not affect the threshold current density numerically.

1. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. **13**(1), 111–124 (2007). [CrossRef]

16. T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. **13**(5), 1273–1278 (2007). [CrossRef]

17. N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. **86**(19), 193115 (2005). [CrossRef]

18. L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. **11**(4), 554–567 (1996). [CrossRef]

*Γ*and low dash density [5

5. D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi **6**(10), 2217–2221 (2009) (c). [CrossRef]

*Γ*(

*Γ*. Our model also predicts a minimum of

18. L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. **11**(4), 554–567 (1996). [CrossRef]

**13**(5), 1273–1278 (2007). [CrossRef]

*Γ*,

**6**(10), 2217–2221 (2009) (c). [CrossRef]

## 4. Conclusion

## Acknowledgment

## References and links

1. | F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. |

2. | J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. |

3. | C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. |

4. | D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. |

5. | D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi |

6. | D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. |

7. | C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. |

8. | M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. |

9. | Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. |

10. | H. Dery and G. Eisenstein, “Self-consistent rate equations of self-assembly quantum wire lasers,” IEEE J. Quantum Electron. |

11. | M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B |

12. | K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. |

13. | F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. |

14. | D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. |

15. | R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. |

16. | T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. |

17. | N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. |

18. | L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. |

**OCIS Codes**

(140.5960) Lasers and laser optics : Semiconductor lasers

(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

**ToC Category:**

Lasers and Laser Optics

**History**

Original Manuscript: March 1, 2011

Revised Manuscript: May 12, 2011

Manuscript Accepted: May 17, 2011

Published: June 27, 2011

**Citation**

M. Z. M. Khan, T. K. Ng, U. Schwingenschlogl, P. Bhattacharya, and B. S. Ooi, "Effect of the number of stacking layers on the characteristics of quantum-dash lasers," Opt. Express **19**, 13378-13385 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13378

Sort: Year | Journal | Reset

### References

- F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007). [CrossRef]
- J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005). [CrossRef]
- C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008). [CrossRef]
- D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009). [CrossRef]
- D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c). [CrossRef]
- D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008). [CrossRef]
- C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009). [CrossRef]
- M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004). [CrossRef]
- Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42(11–12), 1224–1232 (2006). [CrossRef]
- H. Dery and G. Eisenstein, “Self-consistent rate equations of self-assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004). [CrossRef]
- M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000). [CrossRef]
- K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007). [CrossRef]
- F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009). [CrossRef]
- D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]
- R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002). [CrossRef]
- T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007). [CrossRef]
- N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005). [CrossRef]
- L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.