OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 14 — Jul. 4, 2011
  • pp: 13378–13385
« Show journal navigation

Effect of the number of stacking layers on the characteristics of quantum-dash lasers

M. Z. M. Khan, T. K. Ng, U. Schwingenschlogl, P. Bhattacharya, and B. S. Ooi  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13378-13385 (2011)
http://dx.doi.org/10.1364/OE.19.013378


View Full Text Article

Acrobat PDF (1083 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical model is evaluated to investigate the characteristics of InAs/InP quantum dash (Qdash) lasers as a function of the stack number. The model is based on multimode carrier-photon rate equations and accounts for both inhomogeneous and homogeneous broadenings of the optical gain. The numerical results show a non monotonic increase in the threshold current density and a red shift in the lasing wavelength on increasing the stack number, which agrees well with reported experimental results. This observation may partly be attributed to an increase of inhomogeneity in the active region.

© 2011 OSA

1. Introduction

In this work, a simulation model is considered to compare the characteristics of InAs/InP Qdash lasers as a function of the number of stacking layers. We theoretically verify the red shift in the central lasing wavelength (calculated by identifying the central wavelength at full width at half maximum (FWHM) of the lasing spectra) and non monotonic increase in the threshold current density on increasing the stack number. The numerical simulations show a good agreement with experimental observations. By the simulations we find that the phenomenon is partly due to the inherent change in the laser parameters particularly the active region inhomogeneity.

2. Theoretical model

The numerical model, applicable to InAs/InP Qdash lasers, is evaluated from the basic coupled rate equations of each Qdash ensemble incorporating the carrier and photon dynamics at each energy level. The technique is based on the density matrix formulation of the Qdash gain media [8

8. M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004). [CrossRef]

,9

9. Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42(11–12), 1224–1232 (2006). [CrossRef]

] where the quantum wire like nature has a large influence on the gain properties of the laser [10

10. H. Dery and G. Eisenstein, “Self-consistent rate equations of self-assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004). [CrossRef]

]. The formulation is similar to the one reported for the analysis of both InGaAs/GaAs [11

11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000). [CrossRef]

] and InAs/InP [12

12. K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007). [CrossRef]

,13

13. F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009). [CrossRef]

] Qdot lasers, and InAs/InP Qdash semiconductor optical amplifier [14

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

], following identical assumptions. The dashes are grouped into 2Md+1 groups according to their central transition wavelength Ecv (j=Mdcorresponds to Ecv) and a series of longitudinal cavity photon modes (m=0,1,..,2Mp modes with separation ΔEm=ch/2naL) are considered over the central photon mode energy Ecvp to describe the interaction between the dashes with different resonant energies and the generated photons. Furthermore, a single ground state (GS) with N intra-dash energy levels is considered in each dash ensemble characterized by the DOS function ND=Ndh2me*/π22 Ej,N+1Ej,0 [14

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

]. Ej,0 and Ej,N correspond to the lowest and highest GS energy of the jth dash group and Ej,k represents a generic energy level of the system. We consider a three level energy system [11

11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000). [CrossRef]

] consisting of the separate confinement heterostructure (SCH), the wetting layer (WL) and the GS energy levels of the dashes with carrier populations NS, NW and Nj,k, respectively. Both, the homogeneous Lorentzian broadening B(EmEj,k) with FWHM Γhom and inhomogeneous Gaussian broadening, of the optical gain is considered in the formulation. Therefore, the fraction of energy states available at the energy level Ej,kis given by [14

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

]:

Gj,k=12πξ0exp((Ej,0Ecv)22ξ02)dEjEj,k+1Ej,0Ej,kEj,0Ej,N+1Ej,0.
(1)

The first term of Eq. (1) is the inhomogeneous term with FWHM of Γinh=2.35ξ0, while the second term is the ratio of two integrals [14

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

]. Note that Gj,k is normalized as j,kGj,k=1. The rate equations are as follows:

dNSdt=ηiIeNSτSWNSτS+NWτWS,
(2)
dNWdt=NSτSW+jkNj,kτDWj,kNWτWD¯NWτWSNWτW,
(3)
dNj,kdt=NWGj,kτWDj,kNj,kτDWj,kNWτDcΓnamgmj,kSm,
(4)
dSmdt=βkjB(EmEj,k)Nj,kτSp+cΓnakjgmj,kSmSmτp.
(5)

Equations (2), (3) and (4) refer to the carrier dynamics in the SCH, WL and dash GS energy levels. I is the current injection, ηiis the internal quantum efficiency, τS(τW,τD) is the recombination lifetime in the SCH (WL,GS) layers, τSW(τWD¯,τWDj,k) is the carrier relaxation lifetime from SCH(WL) to WL(GS) with the bar denoting an average lifetime [11

11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000). [CrossRef]

,14

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

], τWS(τDW) is the excitation lifetime from WL(GS) to SCH(WL), and τSp, τp are the lifetimes of spontaneous emission and photons, respectively [11

11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000). [CrossRef]

]. Note that τDW is calculated through the condition of detailed balance [14

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

] and τp according to [11

11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000). [CrossRef]

]. The multi-mode photon rate equation is given by Eq. (5) where Sm is the photon population of the mth mode. Moreover,
gmj,k=2πe2NDcnaϵ0m02|Mcv|2Ecv(2Pj,k1)Gj,kB(EmEj,k)
(6)
represents the linear optical gain [8

8. M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004). [CrossRef]

,9

9. Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42(11–12), 1224–1232 (2006). [CrossRef]

] of the Ej,k dash group contributing to the mth mode photons, where |Mcv|2 is the transition matrix and Pj,k=Nj,k/2DgNDVAGj,k is the carrier occupational probability (including the spin) [11

11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000). [CrossRef]

,14

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

].

The Qdash laser considered for the analysis is obtained from [15

15. R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002). [CrossRef]

] and is based on the InAs/InP material system. Four stacks of InAs Qdashes with an average height of 1.5 nm and width of 20 nm constitutes the active region with volume VA=1.8×1016 cm3 and refractive index na=3.5. The WL is 1 nm thick with a cross section dash density of 1.0×1012 cm2. The L=1.0 mm long laser with 40 μmstripe width has an internal loss of αi=10 cm1 and as-cleaved facets (R1=R2=0.3) resulting in an optical loss of αm12 cm1 [14

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

,15

15. R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002). [CrossRef]

].

The steady state lasing spectra are calculated [11

11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000). [CrossRef]

] using the above set of rate equations with the fourth-order Runge-Kutta numerical method. We adopt an initial carrier relaxation lifetime of τWD0=2 ps from WL to dash GS, while the carrier relaxation to and re-excitation from SCH are τSW=0.5 ns and τWS=1.0 ns, respectively. The recombination lifetimes within SCH, WL and Qdash GS are, respectively, τS=, τW=0.8 ns and τD=0.5 ns [14

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

].

The degeneracies of the WL and GS is taken as DW=1.8×1019 cm3 and DG=1, respectively, and the volumetric DOS is ND=5×1017 cm3 [14

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

]. The other parameters used in the model are [11

11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000). [CrossRef]

,14

14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

]: Ecv=805 meV, energy level of WL EWL=916 meV, Γhom=10 meV, optical confinement factor Γ=0.03, spontaneous emission efficiency β=104and lifetime τsp=2.8 ns. The separation between the dash groups is ΔEj=0.354 meV, and 2Md+1 varies from 201 to 401 based on the convergence achieved at each Γinh value once stabilizing the lasing spectrum.

3. Numerical results

For a Qdash laser with a single stack layer, no lasing is observed experimentally and Jth reaches an infinite value, as depicted in Fig. 1(a). This has been attributed to the very small Γ and low dash density [5

5. D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c). [CrossRef]

]. However, the numerical results show that besides the above mentioned parameters Γinh strongly affects the lasing condition and is an important parameter when Nlyr2. In Fig. 1(b), less inhomogeneous Qdash lasers (Γinh=15 and 25 meV) show lasing even for a single stacking layer and small Γ (0.009), attaining Jth values of 115 and 233 A/cm2, respectively, unlike for Γinh=45 meV which does not lase (even at 1250 A/cm2). This observation may again be ascribed to reduced internal absorptions due to relatively similar energy states of dashes in the less inhomogeneous system, thus being able to attain lasing from the low density single dash layer with small Γ. Our model also predicts a minimum of Jth for the two and three layer stack structures irrespective of the active region inhomogeneity values. This supports the experimental observation of Fig. 1(a) and also the numerical study of the Qdots [18

18. L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996). [CrossRef]

]. In general, based on our observation we may write a relation for Jth in a similar manner reported for Qdots [16

16. T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007). [CrossRef]

], as JthΓinhVA/Γ, where Γ,Γinh, and VA dominates at the two extreme values of stack number (1 and 8, respectively). However, for Nlyr=2 and 3 these parameters probably balance each other thus attaining a relatively small value of threshold current density.

The experimental results [5

5. D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c). [CrossRef]

] of lasing spectra as a function of the stack number are shown in Fig. 2(a)
Fig. 2 (a) Experimental [5] and (b) calculated lasing wavelength as a function of the stack number for the Qdash lasers reported in [5] and [15], respectively. The three curves in (b) correspond to various inhomogeneous broadening values calculated at low current injection (1.1Jth).
and the results obtained from the model in Fig. 2(b). A red shift trend in λc is observed experimentally on increasing Nlyr, which is well reflected by our calculation, thus showing the effectiveness of our model. The behavior is seen to be consistent with increasing inhomogeneity. A total red shift of ~7.5 nm is observed on increasing the stack number from 2 to 8, corresponding to Γinh=15 meV. Since, the model does not take into consideration the growth and processing parameters that affect the lasing wavelength, we may attribute this observation to the optical confinement factor (lowers with increase in Nlyr) which probably assists in achieving the Γgth rather early. Therefore the lasing condition might be achieved with occupation of carriers in relatively lower energy states, thereby lasing at longer wavelength. Note that the emission at shorter wavelength due to increase in Jth with Nlyr is suppressed.

Interestingly, our results show that the red shift phenomenon may also be attributed to active medium inhomogeneity. To support this statement we compare the lasing spectra of Qdash lasers at various explicit values of Γinh in Fig. 2(b). Considering Nlyr=6 at Γinh=15 meV, we observe λc=1541.6 nm and at Γinh=45 meV, we have λc=1557.9 nm. These values correspond to a red shift of ~16.5 nm when Γinh is increased three times. Moreover, a total red shift of ~26 nm is observed for Γinh=45 meV on increasing Nlyr from 2 to 8, which is more than three times the value of less inhomogeneous system. This unique observation is a consequence of a quasi zero dimensional DOS of the Qdashes which exploits the increase in the higher energy tail states due to dispersion in dash sizes as a result of increase in Γinh. In general, dispersive dash sizes result in overlapping DOS which probably increases the states in the high energy tail of the dashes DOS. Therefore, higher energy photons from shorter dashes (smaller height and larger band transition energies) which lase first probably get absorbed in the high energy tails (now incorporating more electronic states due to overlap) of longer dashes (larger height and smaller band transition energies) which lase later and eventually dominate. Therefore, lasing occurs at longer wavelengths due to the small energy photons of the longer dashes. As Γinh increases, the dashes with least band transition energy subsequently dominate and the lasing shifts to longer wavelengths (red shift of λc). In general, we may then deduce the relationship λcΓinhΓ.

4. Conclusion

Acknowledgment

The work was supported by a joint program between KAUST and the University of Michigan, Ann Arbor, under KAUST- Academic Excellence Alliance (AEA) 2010 Grant.

References and links

1.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007). [CrossRef]

2.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005). [CrossRef]

3.

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008). [CrossRef]

4.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009). [CrossRef]

5.

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c). [CrossRef]

6.

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008). [CrossRef]

7.

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009). [CrossRef]

8.

M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004). [CrossRef]

9.

Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42(11–12), 1224–1232 (2006). [CrossRef]

10.

H. Dery and G. Eisenstein, “Self-consistent rate equations of self-assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004). [CrossRef]

11.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000). [CrossRef]

12.

K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007). [CrossRef]

13.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009). [CrossRef]

14.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]

15.

R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002). [CrossRef]

16.

T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007). [CrossRef]

17.

N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005). [CrossRef]

18.

L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996). [CrossRef]

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 1, 2011
Revised Manuscript: May 12, 2011
Manuscript Accepted: May 17, 2011
Published: June 27, 2011

Citation
M. Z. M. Khan, T. K. Ng, U. Schwingenschlogl, P. Bhattacharya, and B. S. Ooi, "Effect of the number of stacking layers on the characteristics of quantum-dash lasers," Opt. Express 19, 13378-13385 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13378


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007). [CrossRef]
  2. J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005). [CrossRef]
  3. C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008). [CrossRef]
  4. D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009). [CrossRef]
  5. D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c). [CrossRef]
  6. D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008). [CrossRef]
  7. C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009). [CrossRef]
  8. M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004). [CrossRef]
  9. Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42(11–12), 1224–1232 (2006). [CrossRef]
  10. H. Dery and G. Eisenstein, “Self-consistent rate equations of self-assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004). [CrossRef]
  11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000). [CrossRef]
  12. K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007). [CrossRef]
  13. F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009). [CrossRef]
  14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005). [CrossRef]
  15. R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002). [CrossRef]
  16. T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007). [CrossRef]
  17. N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005). [CrossRef]
  18. L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited