## Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector |

Optics Express, Vol. 19, Issue 14, pp. 13497-13502 (2011)

http://dx.doi.org/10.1364/OE.19.013497

Acrobat PDF (798 KB)

### Abstract

We demonstrated a laser ranging system with single photon detection at 1550 nm. The single-photon detector was a 1-GHz sine-wave gated InGaAs/InP avalanche photodiode. In daylight, 8-cm depth resolution was achieved directly by using a time-of-flight approach based on time-correlated single photon counting measurement. This system presented a potential for low energy level and eye-safe laser ranging system in long-range measurement.

© 2011 OSA

## 1. Introduction

2. W. C. Priedhorsky, R. C. Smith, and C. Ho, “Laser ranging and mapping with a photon-counting detector,” Appl. Opt. **35**(3), 441–452 (1996). [CrossRef] [PubMed]

4. J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. **37**(31), 7298–7304 (1998). [CrossRef] [PubMed]

6. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. **34**(3–4), 503–549 (2002). [CrossRef]

9. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. **48**(32), 6241–6251 (2009). [CrossRef] [PubMed]

11. C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. **38**(9), 1833–1840 (1999). [CrossRef] [PubMed]

14. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express **18**(9), 9192–9206 (2010). [CrossRef] [PubMed]

7. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. **32**(15), 2266–2268 (2007). [CrossRef] [PubMed]

15. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. **84**(19), 3762–3764 (2004). [CrossRef]

18. M. Ren, G. Wu, E. Wu, and H. Zeng, “Experimental demonstration of counterfactual quantum key distribution,” Laser Phys. **21**(4), 755–760 (2011). [CrossRef]

19. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express **14**(21), 10043–10049 (2006). [CrossRef] [PubMed]

30. M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. **44**(5), 430–434 (2008). [CrossRef]

32. J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. **45**(7), 792–799 (2009). [CrossRef]

## 2. Single-photon laser ranging scheme at 1550 nm

19. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express **14**(21), 10043–10049 (2006). [CrossRef] [PubMed]

27. Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. **96**(19), 191107 (2010). [CrossRef]

*T*) is very low, e.g.

_{dc}*T*< 0.001 as the gate pulse is 1 ns at the gating rate of 1 MHz. The acquisition time will be 1000 times longer than that using SPD in continuous operation mode. This is intolerable for practical applications. This problem could be solved by increasing

_{dc}*T*through increasing the gating pulse width or repetition rate. However, increasing the gate width will degrade the detector due to the afterpulsing effect. Thus, we chose to increase the gating pulse repetition rate.

_{dc}## 3. Experiment setup and results

*T*) was determined by the timing jitter of the detector (

*t*), the timing jitter of the TCSPC (

_{1}*t*), and the pulse width of the laser source (

_{2}~10 ps*t*), as the function of

_{3}~20 ps*T*was only 80 ps when the gate was synchronized with the laser source as shown in Fig. 2(c). However, we could not offer a synchronized trigger clock for the detector in the single-photon ranging. The 1-GHz sine wave applied on the InGaAs/InP APD was not synchronized with the laser source. The relative phase was randomly shifting between the laser pulse and the detection gate. Figure 2(d) shows the TCSPC output of the SPD without synchronization to the laser source, showing a total timing jitter of about 460 ps. In this “free-running” mode, the detection efficiency was 4% with dark count rate of 10 kHz, and the afterpulse probability was 3% with a 10-ns deadtime.

*L = vt/2*, where

*v*is the light speed in the air,

*t*is the flight time of the photons. When the two cubes were separated by 30 cm, the two peaks in the time-correlation measurement were clearly separated. And the centers of the two peaks were separated by 2.0 ns, which was the correct time of flight between the two targets. When the cubes were separated by 8 cm, although the two peaks were partly overlapped, we could still distinguish them easily. Decreasing the distance between the two cubes to 6 cm, the two peaks were overlapped and we could no longer discriminate them directly. Therefore, the depth resolution was about 8 cm corresponding to 500 ps time-of-flight of the photons, which was close to the timing jitter of the SPD of 460 ps. The daylight environment did not have effect on the single-photon ranging, as a narrow optical bandpass filter was used to extract the signal photons. The timing jitter of the InGaAs/InP APD SPDs can be further decreased by using a higher repetition rate gate [21

21. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express **17**(8), 6275–6282 (2009). [CrossRef] [PubMed]

22. L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. **94**(16), 161106 (2009). [CrossRef]

24. Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. **96**(7), 071101 (2010). [CrossRef]

28. J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. **95**(9), 091103 (2009). [CrossRef]

31. C. Hu, M. Liu, X. Zheng, and J. C. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. **46**(1), 35–39 (2010). [CrossRef]

30. M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. **44**(5), 430–434 (2008). [CrossRef]

32. J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. **45**(7), 792–799 (2009). [CrossRef]

## 4. Conclusion

## Acknowledgments

## References and links

1. | J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. |

2. | W. C. Priedhorsky, R. C. Smith, and C. Ho, “Laser ranging and mapping with a photon-counting detector,” Appl. Opt. |

3. | J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. |

4. | J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. |

5. | M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. |

6. | J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. |

7. | R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. |

8. | P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express |

9. | A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. |

10. | J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics |

11. | C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. |

12. | M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. |

13. | R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. |

14. | N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express |

15. | C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. |

16. | Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. |

17. | J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. |

18. | M. Ren, G. Wu, E. Wu, and H. Zeng, “Experimental demonstration of counterfactual quantum key distribution,” Laser Phys. |

19. | N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express |

20. | Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. |

21. | N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express |

22. | L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. |

23. | N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. |

24. | Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. |

25. | X. Chen, E. Wu, G. Wu, and H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express |

26. | Y. Jian, E. Wu, G. Wu, and H. Zeng, “Optically self-balanced InGaAs-InP Avalanche photodiode for Infrared single-photon detection,” IEEE Photon. Technol. Lett. |

27. | Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. |

28. | J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. |

29. | J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” arXiv: 1002.3240v1 [quant-ph]. (2010). |

30. | M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. |

31. | C. Hu, M. Liu, X. Zheng, and J. C. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. |

32. | J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. |

**OCIS Codes**

(030.5260) Coherence and statistical optics : Photon counting

(040.3780) Detectors : Low light level

(280.3400) Remote sensing and sensors : Laser range finder

(280.3640) Remote sensing and sensors : Lidar

**ToC Category:**

Remote Sensing

**History**

Original Manuscript: April 21, 2011

Revised Manuscript: June 10, 2011

Manuscript Accepted: June 16, 2011

Published: June 28, 2011

**Citation**

Min Ren, Xiaorong Gu, Yan Liang, Weibin Kong, E. Wu, Guang Wu, and Heping Zeng, "Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector," Opt. Express **19**, 13497-13502 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13497

Sort: Year | Journal | Reset

### References

- J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985). [CrossRef]
- W. C. Priedhorsky, R. C. Smith, and C. Ho, “Laser ranging and mapping with a photon-counting detector,” Appl. Opt. 35(3), 441–452 (1996). [CrossRef] [PubMed]
- J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22(8), 543–545 (1997). [CrossRef] [PubMed]
- J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37(31), 7298–7304 (1998). [CrossRef] [PubMed]
- M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001). [CrossRef]
- J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002). [CrossRef]
- R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007). [CrossRef] [PubMed]
- P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008). [CrossRef] [PubMed]
- A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009). [CrossRef] [PubMed]
- J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010). [CrossRef]
- C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. 38(9), 1833–1840 (1999). [CrossRef] [PubMed]
- M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002). [CrossRef] [PubMed]
- R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).
- N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010). [CrossRef] [PubMed]
- C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84(19), 3762–3764 (2004). [CrossRef]
- Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008). [CrossRef]
- J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. 11(6), 065004 (2009). [CrossRef]
- M. Ren, G. Wu, E. Wu, and H. Zeng, “Experimental demonstration of counterfactual quantum key distribution,” Laser Phys. 21(4), 755–760 (2011). [CrossRef]
- N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14(21), 10043–10049 (2006). [CrossRef] [PubMed]
- Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007). [CrossRef]
- N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009). [CrossRef] [PubMed]
- L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94(16), 161106 (2009). [CrossRef]
- N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010). [CrossRef]
- Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010). [CrossRef]
- X. Chen, E. Wu, G. Wu, and H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18(7), 7010–7018 (2010). [CrossRef] [PubMed]
- Y. Jian, E. Wu, G. Wu, and H. Zeng, “Optically self-balanced InGaAs-InP Avalanche photodiode for Infrared single-photon detection,” IEEE Photon. Technol. Lett. 22(3), 173–175 (2010). [CrossRef]
- Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96(19), 191107 (2010). [CrossRef]
- J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009). [CrossRef]
- J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” arXiv: 1002.3240v1 [quant-ph]. (2010).
- M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008). [CrossRef]
- C. Hu, M. Liu, X. Zheng, and J. C. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46(1), 35–39 (2010). [CrossRef]
- J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.