OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13963–13973
« Show journal navigation

Capped Mo/Si multilayers with improved performance at 30.4 nm for future solar missions

Alain Jody Corso, Paola Zuppella, Piergiorgio Nicolosi, David L. Windt, E. Gullikson, and Maria Guglielmina Pelizzo  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 13963-13973 (2011)
http://dx.doi.org/10.1364/OE.19.013963


View Full Text Article

Acrobat PDF (1206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Novel capping layer structures have been deposited on periodic Mo/Si multilayers to optimize reflectance at 30.4 nm. Design, deposition and characterization of such coatings are presented. Most of the structures proposed show improved performance with respect to standard Mo/Si multilayers and are stable over time. Reflectance at 121.6 nm and in the visible spectral range have been also tested to explore the applicability of such coatings to the Multi Element Telescope for Imaging and Spectroscopy (METIS) instrument, a coronagraph being developed for the ESA Solar Orbiter platform.

© 2011 OSA

1. Introduction

2. Multilayer design and fabrication

The selection of capping layer material candidates was based on simulations performed with the goal of improving peak reflectance at 30.4 nm, while simultaneously optimizing the reflectance at 121.6 nm and in the visible range. We focused principally on non-toxic and stable metals for the top-most layer of the cap, with iridium (Ir), ruthenium (Ru) and tungsten (W) emerging as the best choices. The final optimization of the capping layer design uses an analysis of the standing wave distribution throughout the film stack in order to maximize the peak reflectance at the target wavelength [18

18. M. G. Pelizzo, M. Suman, D. L. Windt, G. Monaco, and P. Nicolosi, “Innovative methods for optimization and characterization of multilayer coatings”, Proceedings Vol. 7360, EUV and X-Ray Optics: Synergy between Laboratory and Space, René Hudec; Ladislav Pina, Editors, 73600Q (2009).

]; this technique was developed for EUV lithographic applications [19

19. M. Suman, M. G. Pelizzo, P. Nicolosi, and D. L. Windt, “Aperiodic multilayers with enhanced reflectivity for extreme ultraviolet lithography,” Appl. Opt. 47(16), 2906–2914 (2008). [CrossRef] [PubMed]

, 20

20. M. Suman, G. Monaco, M. G. Pelizzo, D. L. Windt, and P. Nicolosi, “Realization and characterization of an XUV multilayer coating for attosecond pulses,” Opt. Express 17(10), 7922–7932 (2009). [CrossRef] [PubMed]

]. The underneath Mo/Si periodic structure, optimized for peak reflectance at 30.4 nm with a 5° incidence angle, was designed using IMD software [21

21. D. L. Windt, “IMD: Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998). [CrossRef]

] and its parameters are reported in Table 1

Table 1. Structure Of The Periodic Mo/Si ML Tuned To 30.4nm. d Is The Multilayer Period, Г Is The Layer Thickness Ratio, And N Is The Number Of Periods

table-icon
View This Table
| View All Tables
.

Optimized capping layer structure parameters are reported in Table 2

Table 2. The Capping-Layers Structure And Their Theoretical Reflectance Peak At 30.4nm

table-icon
View This Table
| View All Tables
. Ir is an attractive candidate due to its resilience to oxidation and its widely use in space applications. For this investigation, Ir top layers were coupled with either Mo (CL1) or Si (CL2) underlayers. These two alternatives have been considered in order to explore possible different behaviors at the Ir interfaces. Ru is also an attractive candidate material due to its demonstrated stability in harsh environments in EUV lithography applications, even though Ru can form an oxide. The Ru capping layer design (CL3), is coupled with a Mo layer is used in order to avoid inter-diffusions with the Si top layer of the underlying Mo/Si coating [22

22. S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42(28), 5750–5758 (2003). [CrossRef] [PubMed]

]. The fourth capping layer structure uses a single W layer. Periodic multilayers containing W are widely used for X-ray applications [23

23. D. L. Windt, F. E. Christensen, W. W. Craig, C. Hailey, F. A. Harrison, M. Jimenez-Garate, R. Kalyanaram, and P. H. Mao, “Growth, structure and performance of depth-graded W/Si multilayers for hard x-ray optics,” J. Appl. Phys. 88(1), 460–470 (2000). [CrossRef]

]. Intermixing between W and Si is expected, similar to the intermixing found in Mo/Si multilayers, with formation of tungsten silicides; W is also expected to oxidize upon exposure to air.

The optical performance of the capped multilayers are compared with the reference standard structure reported in Table 1, The reference standard is a periodic Mo/Si ML with a 2-nm-thick Si layer cap; this top Si layer is expected to oxidize after exposure to air, forming a SiO2 layer approximately 1 nm in thickness.

The calculated peak reflectance values are also shown in Table 2, computed assuming perfectly smooth, sharp interfaces. For these calculations we have used the optical constants provided by the Center for X-ray Optics for amorphous Si, Ir, Ru and W and those from Tarrio et al [24

24. M. Suman, M. G. Pelizzo, D. L. Windt, and P. Nicolosi, “Extreme-ultraviolet multilayer coatings with high spectral purity for solar imaging,” Appl. Opt. 48(29), 5432–5437 (2009). [CrossRef] [PubMed]

, 25

25. C. Tarrio, R. N. Watts, T. B. Lucatorto, J. M. Slaughter, and C. M. Falco, “Optical constants of in situ-deposited films of important extreme-ultraviolet multilayer mirror materials,” Appl. Opt. 37(19), 4100–4104 (1998). [CrossRef] [PubMed]

] for Mo. These simulations show that all the capped structures have higher reflectance relative to the standard Mo/Si reference structure.

Prototype multilayer structures were deposited at Reflective X-ray Optics LLC (New York, USA) by DC magnetron sputtering onto polished Si(100) substrates measuring 16 mm x 16 mm, using a system that has been described previously [26

26. J. Dalla Torre, J. L. Bocquet, Y. Limoge, J. P. Crocombette, E. Adam, G. Martin, T. Baron, P. Rivallin, and P. Mur, “Microstructure of Thin Tantalum Films Sputtered onto Inclined Substrates: Experiments and Atomistic Simulations,” J. Appl. Phys. 94(1), 263–271 (2003). [CrossRef]

].

3. Reflectance test

3.1 EUV reflectance measuremen

The EUV reflectance of CL1, CL2 and CL4 along with the reference Mo/Si multilayer (REF) were measured approximately two weeks after deposition at BEAR beamline at ELETTRA Synchrotron (Trieste, Italy) [27

27. G. Naletto, M. G. Pelizzo, G. Tondello, S. Nannarone, and A. Giglia, “The monochromator for the synchrotron radiation beamline X-MOSS at ELETTRA,” SPIE Proc. 4145, 105–113 (2001). [CrossRef]

]. Reflectance measurements were made over the 26 – 34 nm spectral range with a 5° beam incidence angle. Due to scheduling difficulties, multilayer CL3 was measured at beamline 6.3.2 at ALS (Berkeley, California USA) three weeks later using the same measurement parameters as used at BEAR. In order to compare the measurements performed at the two beamlines, CL1 was also re-measured at ALS and we find excellent agreement with the BEAR results. In Fig. 1
Fig. 1 Reflectance measurements performed at BEAR beamline and at ALS 6.3.2 beamline of sample CL1, CL2, CL3 and REF.
we show the experimental reflectance data for CL1, CL2, CL3 and REF, along with fits to these curves. Reflectance data for CL4 are shown in Fig. 3
Fig. 3 Reflectance measurements of CL4 a few weeks after deposition and after six months performed at BEAR beamline.
.

The fits shown in Fig. 1 were computed using IMD software, assuming a polarization factor of 0.9 of the beamline experimental beam. Fit parameters (i.e. layer thicknesses and interfacial roughness values are reported in Table 3

Tab.3. Experimental data fitting parameters and peak reflectances.

table-icon
View This Table
| View All Tables
, along with the measured peak reflectance values. The samples are found to have a period that in some cases is slightly different from the theoretical values reported in Table 1, fact that explains the small shift in the peak wavelengths in Fig. 1; on the contrary, such small period variation does not affect peak reflectance value. The capping layer thicknesses were found to be within a few angstroms of the target values in all cases. From the fitting, interface roughness value have been estimated.

3.2 Ly-alpha reflectance measurements

The reflectance at 121.6 nm has been measured using a normal incidence reflectometer at CNR – IFN LUXOR (Padova, Italy) three weeks after deposition. During this time, samples were kept in plastic boxes stored in regular atmosphere. A Hamamatsu deuterium lamp coupled with an EUV-FUV monochromator mounted in Johnson–Onaka configuration was used to generate monochromatic radiation. Preliminary spectral calibration of the monochromator was performed using emission lines generated by an hollow cathode lamp filled with different gases, as well as a Hg lamp. A toroidal mirror focuses the beam exiting from monochromator in the test chamber equipped by a θ – 2θ plane system. The measurements were made at 10° of incidence in two different orientations of the test chamber rotated 90° to each other; results were then averaged to obtain the reflectance for un-polarized light. The incident and reflected beam intensities were measured by a channel electron multiplier (CEM) detector in photon counting mode, and the reflectance curves as function of the incidence angle at 121.6 nm wavelength were computed from the ratio of the two signals. The results are reported in Fig. 4
Fig. 4 Reflectance measurements at 121.6 nm performed after deposition at 10° incidence angle; the data are compared with the simulations performed with IMD program.
along with the theoretical values calculated assuming an un-oxidized capping layer.

The reflectance at 121.6 nm depends on the top most layers of the ML. In particular, in Fig. 5
Fig. 5 Standing wave intensity distribution in CL1 at 121.6 nm.
the standing wave distribution inside the structure CL1 at this wavelength shows that the reflectance mainly depends on the capping layer and the first Si layer. The experimental results are lower than the theoretical values for all samples, except for CL1; we hypothesize that this unexpected result may be due to inaccurate optical constants for Mo. On the other hand, the experimental value for CL2 is well in agreement with simulations since both Ir and Si optical constants are well known and Ir does not oxidize. The reflectance measured for the reference sample is consistent with a Si oxide thickness of 0.7 nm, assuming the SiO2 optical constants in IMD database. The CL3 discrepancy between theoretical and experimental reflectance values can be attributed to ruthenium oxidation; in this case simulation cannot be performed as Ru-oxide optical constants are unavailable. In the case of CL4, a large discrepancy has been observed between experimental data and theoretical simulation; in this case tungsten oxidation can play an important role.

All sample were re-measured after six months; again, all sample results to preserve the reflectance, except CL4, which value drops to 0.04.

3.3 Visible reflectance measurements

Reflectance at visible wavelengths was measured by a commercial Varian UV-Vis-NIR spectrophotometer (model Cary 5000) at normal incidence angle. Results are reported in Table 4

Table 4. Reflectances In The Visible Spectral Range

table-icon
View This Table
| View All Tables
. The diffuse reflectance was found to be negligible and, in this spectral range, oxidation does not strongly affect the reflectance of the materials in question. Samples were re-measured after six months and no appreciable variation was found.

4. AFM analysis

Atomic Force Microscopy (AFM, Park System XE – 70) analysis has been performed operating in non – contact mode on all samples. Sample REF, CL1, CL2 and CL3 appear as a smooth, continuous films with no islanding and ~0.3 nm rms roughness. The analysis was repeated six months after deposition and no changes were found for these samples. However, CL4 has a different topography, with larger roughness after six months (Fig. 6
Fig. 6 AFM analysis of CL4 after deposition and six months later
). The AFM images indicates a re-organization of the film compatible with what already observed to be the formation of W crystallite; intermixing of W and Si in the top surface of a depth graded ML was also observed with TEM [23

23. D. L. Windt, F. E. Christensen, W. W. Craig, C. Hailey, F. A. Harrison, M. Jimenez-Garate, R. Kalyanaram, and P. H. Mao, “Growth, structure and performance of depth-graded W/Si multilayers for hard x-ray optics,” J. Appl. Phys. 88(1), 460–470 (2000). [CrossRef]

]: while the inner bilayers (minimum period 3.33 nm) appear as an amorphous film of Si and W somehow with well define interfaces, the top W/Si bilayer, characterized by a period of around 26 nm, appeared as fully inter-diffused, indicating the possible formation of a WxSiy compound. The same intermixing process was also observed in 4 nm period W/Si multilayer [28

28. M. J. H. Kessels, J. Verhoeven, A. E. Yakshin, F. D. Tichelaar, and F. Bijkerk, “Ion beam induced intermixing of interface structures in W/Si multilayers,” Nucl. Instrum. Methods Phys. Res. B 222(3–4), 484–490 (2004). [CrossRef]

]. Crystallization of the top layer as well as intermixing between top layers materials could explain the degradation of the optical performances. Nevertheless, further investigations are required for fully understanding the physical process that affects the W surface.

5. Conclusion

Acknowledgments

The authors thanks Prof. Ester Antonucci, PI of METIS and Dr. S. Fineschi from INAF - Osservatorio Astronomico di Torino. We are grateful also to Dr. A. Giglia for his support during measurement campaign at BEAR-ELETTRA, and to Prof. G. Mattei, University of Padova, for TEM analysis. This work has been performed with the financial support of the Italian Space Agency (ASI/INAF/015/07/0 and ASI-SOLAR ORBITER) and of the CAssa di RIsparmio di PAdova e ROvigo Foundation - Bandi di Eccellenza 2009/2010 – Project “ADORA”. The work has been also carried out in the frame of the European Cooperation in Science and Technology (COST) Action MP0601 “Short Wavelength Laboratory Sources.”

References and links

1.

G. Naletto, E. Antonucci, V. Andretta, E. Battistelli, S. Cesare, V. Da Deppo, F. d’Angelo, S. Fineschi, M. Focardi, P. Lamy, F. Landini, D. Moses, G. Nicolini, P. Nicolosi, M. Pancrazzi, M. G. Pelizzo, L. Poletto, M. Romoli, S. Solanki, D. Spadaro, L. Teriaca, M. Uslenghi, and L. Zangrilli, “METIS, the multi-element telescope for imaging and spectroscopy for the solar orbiter mission” Proceedings of International Conference on Space Optics, Rhodes (Greece) Oct. 4th-8th (2010).

2.

J. P. Halain, Y. Houbrechts, F. Auchère, P. Rochus, T. Appourchaux, D. Berghmans, U. Schühle, L. Harra, E. Renotte, and A. Zukhov, “The Solar Orbiter EUI instrument optical developments”, Proceedings of International Conference on Space Optics, Rhodes (Greece) Oct. 4th-8th (2010).

3.

J. P. Delaboudineire, G. E. Artzner, J. Brunaud, A. H. Gabriel, J. F. Hochedez, F. Millier, X. Y. Song, B. Au, K. P. Dere, R. A. Howard, R. Kreplin, D. J. Michels, J. D. Moses, J. M. Defise, C. Jamar, P. Rochus, J. P. Chauvineau, J. P. Marioge, R. C. Catura, J. R. Lemen, L. Shing, R. A. Stern, J. B. Gurman, W. M. Neupert, A. Maucherat, F. Clette, P. Cugnon, and E. L. Van Dessel, “EIT: Extreme-ultraviolet imaging telescope for the SOHO mission,” Sol. Phys. 162, 291–312 (1995). [CrossRef]

4.

R. Soufli, D. L. Windt, J. C. Robinson, S. L. Baker, E. Spiller, F. J. Dollar, A. L. Aquila, E. M. Gullikson, B. Kjornrattanawanich, J. F. Seely, and L. Golub, “Development and testing of EUV multilayer coatings for the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory,” Proc. SPIE 5901, 59010M-1 –59010M-11 (2005). [CrossRef]

5.

D. Berghmans, J. F. Hochedez, J. M. Defise, J. H. Lecat, B. Nicula, V. Slemzin, G. Lawrence, A. C. Katsyiannis, R. V. der Linden, A. Zhukov, F. Clette, P. Rochus, E. Mazy, T. Thibert, P. Nicolosi, M.-G. Pelizzo, and U. Schühle, “SWAP on board PROBA 2, a new EUV imager for solar monitoring,” Adv. Space Res. 38(8), 1807–1811 (2006). [CrossRef]

6.

M. G. Pelizzo, D. Gardiol, P. Nicolosi, A. Patelli, and V. Rigato, “Design, deposition, and characterization of multilayer coatings for the ultraviolet and visible-light coronagraphic imager,” Appl. Opt. 43(13), 2661–2669 (2004). [CrossRef] [PubMed]

7.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002). [CrossRef]

8.

V. Rigato, A. Patelli, G. Maggioni, G. Salmaso, V. Mattarello, M. G. Pelizzo, P. Nicolosi, L. Depero, E. Bontempi, and P. Mazzoldi, “Effects of ion bombardment and gas incorporation on the properties of Mo/a-Si:H multilayers for EUV applications,” Surf. Coat. Tech. 174, 40–48 (2003). [CrossRef]

9.

J. Gautier, F. Delmotte, M. Roulliay, F. Bridou, M. F. Ravet, and A. Jérome, “Study of normal incidence of three-component multilayer mirrors in the range 20-40 nm,” Appl. Opt. 44(3), 384–390 (2005). [CrossRef] [PubMed]

10.

D. L. Windt, S. Donguy, J. Seely, and B. Kjornrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt. 43(9), 1835–1848 (2004). [CrossRef] [PubMed]

11.

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings”, SPIE Proc. Vol. 5901, (2005).

12.

S. Zuccon, D. Garoli, M. G. Pelizzo, P. Nicolosi, S. Fineschi, and D. Windt, “Multilayer coatings for multiband spectral observations”, Proceedings of 6th International Conference on Space Optics, ESTEC, Noordwjik, The Netherlands, 2006 (ESA SP-621 June 2006).

13.

J. T. Zhu, S. K. Zhou, H. C. Li, Q. S. Huang, Z. S. Wang, K. Le Guen, M. H. Hu, J. M. André, and P. Jonnard, “Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength,” Appl. Opt. 49(20), 3922–3925 (2010). [CrossRef] [PubMed]

14.

H. Takenaka, S. Ichimaru, T. Ohchi, and E. M. Gullikson, “Soft-X-ray reflectivity and heat resistance of SiC/Mg multilayer,” J. Electron Spec. Rel. Phen. 144, 1047–1049 (2010). [CrossRef]

15.

P. Zuppella, G. Monaco, A. J. Corso, P. Nicolosi, D. L. Windt, V. Bello, G. Mattei, and M. G. Pelizzo, “Iridium/silicon multilayers for extreme ultraviolet applications in the 20-35 nm wavelength range,” Opt. Lett. 36(7), 1203–1205 (2011). [CrossRef] [PubMed]

16.

M. H. Hu, K. Le Guen, J. M. André, P. Jonnard, E. Meltchakov, F. Delmotte, and A. Galtayries, “Structural properties of Al/Mo/SiC multilayers with high reflectivity for extreme ultraviolet light,” Opt. Express 18(19), 20019–20028 (2010). [CrossRef] [PubMed]

17.

M. G. Pelizzo, M. Suman, G. Monaco, P. Nicolosi, and D. L. Windt, “High performance EUV multilayer structures insensitive to capping layer optical parameters,” Opt. Express 16(19), 15228–15237 (2008). [CrossRef] [PubMed]

18.

M. G. Pelizzo, M. Suman, D. L. Windt, G. Monaco, and P. Nicolosi, “Innovative methods for optimization and characterization of multilayer coatings”, Proceedings Vol. 7360, EUV and X-Ray Optics: Synergy between Laboratory and Space, René Hudec; Ladislav Pina, Editors, 73600Q (2009).

19.

M. Suman, M. G. Pelizzo, P. Nicolosi, and D. L. Windt, “Aperiodic multilayers with enhanced reflectivity for extreme ultraviolet lithography,” Appl. Opt. 47(16), 2906–2914 (2008). [CrossRef] [PubMed]

20.

M. Suman, G. Monaco, M. G. Pelizzo, D. L. Windt, and P. Nicolosi, “Realization and characterization of an XUV multilayer coating for attosecond pulses,” Opt. Express 17(10), 7922–7932 (2009). [CrossRef] [PubMed]

21.

D. L. Windt, “IMD: Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998). [CrossRef]

22.

S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42(28), 5750–5758 (2003). [CrossRef] [PubMed]

23.

D. L. Windt, F. E. Christensen, W. W. Craig, C. Hailey, F. A. Harrison, M. Jimenez-Garate, R. Kalyanaram, and P. H. Mao, “Growth, structure and performance of depth-graded W/Si multilayers for hard x-ray optics,” J. Appl. Phys. 88(1), 460–470 (2000). [CrossRef]

24.

M. Suman, M. G. Pelizzo, D. L. Windt, and P. Nicolosi, “Extreme-ultraviolet multilayer coatings with high spectral purity for solar imaging,” Appl. Opt. 48(29), 5432–5437 (2009). [CrossRef] [PubMed]

25.

C. Tarrio, R. N. Watts, T. B. Lucatorto, J. M. Slaughter, and C. M. Falco, “Optical constants of in situ-deposited films of important extreme-ultraviolet multilayer mirror materials,” Appl. Opt. 37(19), 4100–4104 (1998). [CrossRef] [PubMed]

26.

J. Dalla Torre, J. L. Bocquet, Y. Limoge, J. P. Crocombette, E. Adam, G. Martin, T. Baron, P. Rivallin, and P. Mur, “Microstructure of Thin Tantalum Films Sputtered onto Inclined Substrates: Experiments and Atomistic Simulations,” J. Appl. Phys. 94(1), 263–271 (2003). [CrossRef]

27.

G. Naletto, M. G. Pelizzo, G. Tondello, S. Nannarone, and A. Giglia, “The monochromator for the synchrotron radiation beamline X-MOSS at ELETTRA,” SPIE Proc. 4145, 105–113 (2001). [CrossRef]

28.

M. J. H. Kessels, J. Verhoeven, A. E. Yakshin, F. D. Tichelaar, and F. Bijkerk, “Ion beam induced intermixing of interface structures in W/Si multilayers,” Nucl. Instrum. Methods Phys. Res. B 222(3–4), 484–490 (2004). [CrossRef]

OCIS Codes
(230.4170) Optical devices : Multilayers
(260.7200) Physical optics : Ultraviolet, extreme
(310.1860) Thin films : Deposition and fabrication
(350.1260) Other areas of optics : Astronomical optics
(350.6090) Other areas of optics : Space optics
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

History
Original Manuscript: April 6, 2011
Revised Manuscript: June 3, 2011
Manuscript Accepted: June 20, 2011
Published: July 7, 2011

Citation
Alain Jody Corso, Paola Zuppella, Piergiorgio Nicolosi, David L. Windt, E. Gullikson, and Maria Guglielmina Pelizzo, "Capped Mo/Si multilayers with improved performance at 30.4 nm for future solar missions," Opt. Express 19, 13963-13973 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-13963


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Naletto, E. Antonucci, V. Andretta, E. Battistelli, S. Cesare, V. Da Deppo, F. d’Angelo, S. Fineschi, M. Focardi, P. Lamy, F. Landini, D. Moses, G. Nicolini, P. Nicolosi, M. Pancrazzi, M. G. Pelizzo, L. Poletto, M. Romoli, S. Solanki, D. Spadaro, L. Teriaca, M. Uslenghi, and L. Zangrilli, “METIS, the multi-element telescope for imaging and spectroscopy for the solar orbiter mission” Proceedings of International Conference on Space Optics, Rhodes (Greece) Oct. 4th-8th (2010).
  2. J. P. Halain, Y. Houbrechts, F. Auchère, P. Rochus, T. Appourchaux, D. Berghmans, U. Schühle, L. Harra, E. Renotte, and A. Zukhov, “The Solar Orbiter EUI instrument optical developments”, Proceedings of International Conference on Space Optics, Rhodes (Greece) Oct. 4th-8th (2010).
  3. J. P. Delaboudineire, G. E. Artzner, J. Brunaud, A. H. Gabriel, J. F. Hochedez, F. Millier, X. Y. Song, B. Au, K. P. Dere, R. A. Howard, R. Kreplin, D. J. Michels, J. D. Moses, J. M. Defise, C. Jamar, P. Rochus, J. P. Chauvineau, J. P. Marioge, R. C. Catura, J. R. Lemen, L. Shing, R. A. Stern, J. B. Gurman, W. M. Neupert, A. Maucherat, F. Clette, P. Cugnon, and E. L. Van Dessel, “EIT: Extreme-ultraviolet imaging telescope for the SOHO mission,” Sol. Phys. 162, 291–312 (1995). [CrossRef]
  4. R. Soufli, D. L. Windt, J. C. Robinson, S. L. Baker, E. Spiller, F. J. Dollar, A. L. Aquila, E. M. Gullikson, B. Kjornrattanawanich, J. F. Seely, and L. Golub, “Development and testing of EUV multilayer coatings for the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory,” Proc. SPIE 5901, 59010M-1 –59010M-11 (2005). [CrossRef]
  5. D. Berghmans, J. F. Hochedez, J. M. Defise, J. H. Lecat, B. Nicula, V. Slemzin, G. Lawrence, A. C. Katsyiannis, R. V. der Linden, A. Zhukov, F. Clette, P. Rochus, E. Mazy, T. Thibert, P. Nicolosi, M.-G. Pelizzo, and U. Schühle, “SWAP on board PROBA 2, a new EUV imager for solar monitoring,” Adv. Space Res. 38(8), 1807–1811 (2006). [CrossRef]
  6. M. G. Pelizzo, D. Gardiol, P. Nicolosi, A. Patelli, and V. Rigato, “Design, deposition, and characterization of multilayer coatings for the ultraviolet and visible-light coronagraphic imager,” Appl. Opt. 43(13), 2661–2669 (2004). [CrossRef] [PubMed]
  7. S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002). [CrossRef]
  8. V. Rigato, A. Patelli, G. Maggioni, G. Salmaso, V. Mattarello, M. G. Pelizzo, P. Nicolosi, L. Depero, E. Bontempi, and P. Mazzoldi, “Effects of ion bombardment and gas incorporation on the properties of Mo/a-Si:H multilayers for EUV applications,” Surf. Coat. Tech. 174, 40–48 (2003). [CrossRef]
  9. J. Gautier, F. Delmotte, M. Roulliay, F. Bridou, M. F. Ravet, and A. Jérome, “Study of normal incidence of three-component multilayer mirrors in the range 20-40 nm,” Appl. Opt. 44(3), 384–390 (2005). [CrossRef] [PubMed]
  10. D. L. Windt, S. Donguy, J. Seely, and B. Kjornrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt. 43(9), 1835–1848 (2004). [CrossRef] [PubMed]
  11. F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings”, SPIE Proc. Vol. 5901, (2005).
  12. S. Zuccon, D. Garoli, M. G. Pelizzo, P. Nicolosi, S. Fineschi, and D. Windt, “Multilayer coatings for multiband spectral observations”, Proceedings of 6th International Conference on Space Optics, ESTEC, Noordwjik, The Netherlands, 2006 (ESA SP-621 June 2006).
  13. J. T. Zhu, S. K. Zhou, H. C. Li, Q. S. Huang, Z. S. Wang, K. Le Guen, M. H. Hu, J. M. André, and P. Jonnard, “Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength,” Appl. Opt. 49(20), 3922–3925 (2010). [CrossRef] [PubMed]
  14. H. Takenaka, S. Ichimaru, T. Ohchi, and E. M. Gullikson, “Soft-X-ray reflectivity and heat resistance of SiC/Mg multilayer,” J. Electron Spec. Rel. Phen. 144, 1047–1049 (2010). [CrossRef]
  15. P. Zuppella, G. Monaco, A. J. Corso, P. Nicolosi, D. L. Windt, V. Bello, G. Mattei, and M. G. Pelizzo, “Iridium/silicon multilayers for extreme ultraviolet applications in the 20-35 nm wavelength range,” Opt. Lett. 36(7), 1203–1205 (2011). [CrossRef] [PubMed]
  16. M. H. Hu, K. Le Guen, J. M. André, P. Jonnard, E. Meltchakov, F. Delmotte, and A. Galtayries, “Structural properties of Al/Mo/SiC multilayers with high reflectivity for extreme ultraviolet light,” Opt. Express 18(19), 20019–20028 (2010). [CrossRef] [PubMed]
  17. M. G. Pelizzo, M. Suman, G. Monaco, P. Nicolosi, and D. L. Windt, “High performance EUV multilayer structures insensitive to capping layer optical parameters,” Opt. Express 16(19), 15228–15237 (2008). [CrossRef] [PubMed]
  18. M. G. Pelizzo, M. Suman, D. L. Windt, G. Monaco, and P. Nicolosi, “Innovative methods for optimization and characterization of multilayer coatings”, Proceedings Vol. 7360, EUV and X-Ray Optics: Synergy between Laboratory and Space, René Hudec; Ladislav Pina, Editors, 73600Q (2009).
  19. M. Suman, M. G. Pelizzo, P. Nicolosi, and D. L. Windt, “Aperiodic multilayers with enhanced reflectivity for extreme ultraviolet lithography,” Appl. Opt. 47(16), 2906–2914 (2008). [CrossRef] [PubMed]
  20. M. Suman, G. Monaco, M. G. Pelizzo, D. L. Windt, and P. Nicolosi, “Realization and characterization of an XUV multilayer coating for attosecond pulses,” Opt. Express 17(10), 7922–7932 (2009). [CrossRef] [PubMed]
  21. D. L. Windt, “IMD: Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998). [CrossRef]
  22. S. Bajt, H. N. Chapman, N. Nguyen, J. Alameda, J. C. Robinson, M. Malinowski, E. Gullikson, A. Aquila, C. Tarrio, and S. Grantham, “Design and performance of capping layers for extreme-ultraviolet multilayer mirrors,” Appl. Opt. 42(28), 5750–5758 (2003). [CrossRef] [PubMed]
  23. D. L. Windt, F. E. Christensen, W. W. Craig, C. Hailey, F. A. Harrison, M. Jimenez-Garate, R. Kalyanaram, and P. H. Mao, “Growth, structure and performance of depth-graded W/Si multilayers for hard x-ray optics,” J. Appl. Phys. 88(1), 460–470 (2000). [CrossRef]
  24. M. Suman, M. G. Pelizzo, D. L. Windt, and P. Nicolosi, “Extreme-ultraviolet multilayer coatings with high spectral purity for solar imaging,” Appl. Opt. 48(29), 5432–5437 (2009). [CrossRef] [PubMed]
  25. C. Tarrio, R. N. Watts, T. B. Lucatorto, J. M. Slaughter, and C. M. Falco, “Optical constants of in situ-deposited films of important extreme-ultraviolet multilayer mirror materials,” Appl. Opt. 37(19), 4100–4104 (1998). [CrossRef] [PubMed]
  26. J. Dalla Torre, J. L. Bocquet, Y. Limoge, J. P. Crocombette, E. Adam, G. Martin, T. Baron, P. Rivallin, and P. Mur, “Microstructure of Thin Tantalum Films Sputtered onto Inclined Substrates: Experiments and Atomistic Simulations,” J. Appl. Phys. 94(1), 263–271 (2003). [CrossRef]
  27. G. Naletto, M. G. Pelizzo, G. Tondello, S. Nannarone, and A. Giglia, “The monochromator for the synchrotron radiation beamline X-MOSS at ELETTRA,” SPIE Proc. 4145, 105–113 (2001). [CrossRef]
  28. M. J. H. Kessels, J. Verhoeven, A. E. Yakshin, F. D. Tichelaar, and F. Bijkerk, “Ion beam induced intermixing of interface structures in W/Si multilayers,” Nucl. Instrum. Methods Phys. Res. B 222(3–4), 484–490 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited