OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 13989–13999
« Show journal navigation

Timing characterization of 100 GHz passively mode-locked discrete mode laser diodes

David Bitauld, Simon Osborne, and Stephen O’Brien  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 13989-13999 (2011)
http://dx.doi.org/10.1364/OE.19.013989


View Full Text Article

Acrobat PDF (957 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the characterization of the timing stability of passively mode-locked discrete mode diode laser sources. These are edge-emitting devices with a spatially varying refractive index profile for spectral filtering. Two devices with a mode-locking frequency of 100 GHz are characterized. The first device is designed to support a comb of six modes and generates near Fourier limited 1.9 ps pulses. The second supports four primary modes resulting in a sinusoidal modulation of the optical intensity. Using a cross-correlation technique, we measured a 20 fs pulse to pulse timing jitter for the first device, while, for the second device, a mode-beating (RF) linewidth of 1 MHz was measured using heterodyne mixing in a semiconductor optical amplifier. Comparison of these results with those obtained for an equivalent Fabry-Perot laser indicates that the spectral filtering mechanism employed does not adversely affect the timing properties of these passively mode-locked devices.

© 2011 OSA

1. Introduction

We have developed a simple intracavity spectral filtering technique that selects a finite number of modes in standard monolithic Fabry-Perot (FP) diode laser [19

19. S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010). [CrossRef]

]. In these so-called discrete mode (DM) lasers, our design approach in principle allows us to fix the harmonic frequency and also to tailor the intensity profile of the mode-locked laser output. As examples, we have recently designed and demonstrated two types of DM lasers: one producing pulsed output [20

20. D. Bitauld, S. Osborne, and S. O’Brien, “Passive harmonic mode-locking by mode selection in Fabry-Perot diode lasers with patterned effective index,” Opt. Lett. 35, 2200–2202 (2010). [CrossRef] [PubMed]

] and the other a sinusoidal intensity modulation [21

21. S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010). [CrossRef]

]. As timing noise can seriously affect functionalities like data transmission or optical sampling, this paper is dedicated to the characterization of the timing noise properties of these devices. The origins of timing noise in mode-locked lasers have been extensively studied [22

22. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993). [CrossRef]

24

24. R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004). [CrossRef]

]. In the case of semiconductor lasers, spontaneous emission noise is the dominant perturbation at high frequency, which is the frequency range we focus on in this work.

Here we present measurements of timing jitter and mode-beating linewidth for two devices with mode-locking frequencies of 100 GHz. A natural benchmarking device for this study is a plain Fabry-Perot diode laser with the same cavity length. Based on the comparison with the FP device, we conclude that the spectral filtering that we perform does not adversely affect the timing performance of passively mode-locked DM devices.

2. Laser design and intensity spectra

The devices we consider are 875 μm long monolithic ridge waveguide lasers with a high reflection coating on one end and an as-cleaved facet on the other. The active medium is composed of a gain section and a saturable absorber section both of which comprise five InP/InGaAlAs quantum wells. A positive current is applied to the gain section and a negative voltage is applied to create a saturable absorber section. Three devices will be characterized in this work. The first one is a test device with an unperturbed Fabry Perot cavity (FP device) while for the two others six and four modes were selected using shallow etched slots to perturb the cavity (respectively 6DM and 4DM devices). The precise distribution of slots is determined using an inverse scattering approach [19

19. S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010). [CrossRef]

].

Fig. 1 (a) and (c): Feature density functions of the 6DM and the 4DM lasers respectively. Dashed lines indicate intervals where the Fourier transform of the spectral filtering function chosen is negative. Insets: Calculation of the modal threshold gain for the laser cavities schematically pictured in the lower panels of each figure. Lower panels: Laser cavity schematics indicating the locations of the additional features. The devices are high-reflection (HR) coated and include a saturable absorber section adjacent to the HR mirror as indicated. (b): Mode-locked optical spectrum for the 6DM device. The voltage across the saturable absorber section is −2.0 V. The current in the gain section is 175 mA. (d) Mode-locked optical spectrum for the 4DM device. The voltage across the saturable absorber section is −2.3 V. The current in the gain section is 180 mA Insets: (b) Autocorrelation measurement (black solid line) and Fourier limited equivalent for the 6DM laser (red dashed line). (d) Autocorrelation measurement for the 4DM laser.

Optical spectra and intensity autocorrelations of the DM devices are shown in Figs. 1(b) and 1(d). For each device the value of the gain current and the absorber reverse voltage were chosen to obtain stable mode-locking. The parameter values were different in each case because mode locking appears in different regions of the phase space. For the 6DM laser the gain current was 175 mA and the absorber voltage was −2.0 V. From the optical spectrum of the 6DM device we can see that six modes are significantly enhanced with respect to the background modes. There is also some asymmetry of the optical spectrum which we attribute to a mismatch between the position of the gain peak and the frequency of the selected modes. From the intensity autocorrelation of the 6DM laser shown in the inset of Fig. 1(b), we can see that well developed pulses are generated at 100 GHz repetition rate. The red line in this case corresponds to the Fourier limited pulse train autocorrelation we would expect from the measured optical spectrum where only the ten central peaks were taken into account. Assuming Gaussian shaped pulses, the deconvolved full width at half maximum (FWHM) pulse duration is obtained by dividing the autocorrelation FWHM by √2. We find that in this case the pulse duration is 1.90 ps with a very similar Fourier limited value. For comparison, the FP laser (not displayed here) generated pulsed output with a minimum pulse duration of 1.56 ps when the gain current was 130 mA and the absorber voltage was −1.6 V. In this case the corresponding Fourier limited value was 0.86 ps, which indicates the presence of significant pulse chirp or variation of the central wavelength leading to a broadening of the optical spectrum measured over many pulses. We conclude that although the 6DM laser generated pulses of longer duration on account of the limited number of pre-selected modes, unlike the FP laser, the generated pulses are close to the Fourier limit in the DM device.

In the case of the 4DM device, the optical spectrum shown was obtained with a gain section current of 180 mA and an absorber voltage of −2.3 V. The autocorrelation shown in the inset in this case is characteristic of a beating between two modes of approximately equal amplitude. Note that for a purely sinusoidal mode-beating, we would expect the ratio of the maxima and minima of the autocorrelation to be equal to 3. Here the ratio is somewhat larger than this value, which is due to the presence of the pair of satellite modes that add a small harmonic component to the pure sinusoidal waveform. Although the presence of these satellite modes represents an inconvenience in this case, they are necessary to overcome wavelength bistability by enabling mode-locking of the device [21

21. S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010). [CrossRef]

]. It’s interesting to note that our design approach will in principle allow us to adjust the losses of these modes independently from the central pair, which may allow us to obtain an intensity modulation which is closer to the ideal limit. This freedom to individually address the linear losses of each of the selected modes may also enable us to create coherent combs of modes with approximately uniform intensity for applications in coherent communications.

The output powers of the considered devices varied from 18.0 mW in the case of the Fabry-Perot laser, to 7.4 mW in the case of the 4DM device, and 2.2 mW in the case of the 6DM. We attribute the discrepency between the output powers of the DM devices to be due to the fact that the 6DM device included a longer saturable absorber section, while the reduced power of both of these devices relative to the FP laser is likely due to the etched features, which inevitably introduce additional scattering losses.

3. Timing jitter

Figure 2 displays the experimental setup with a schematic representation of the measurement obtained. We can show (appendix Eq. (11)) that the XC appears in the data obtained but it is added to autocorrelation terms. The measurement is given by:
Γi(τi)=Γ11(τi)+Γ22(τi)+ΓΔN12(τ+τi)+ΓΔN12(ττi),
(2)
Γ11 and Γ22 being the autocorrelations of the signals that propagated in each arm and ΓΔN12 the cross-correlation of two pulses separated by ΔN periods. τi is the internal delay of the autocorrelator and τ′ is the external fine optical delay. Γ11 and Γ22 are centered on τi = 0 by definition of an autocorrelation. The two terms can be slightly different if dispersion broadening is significant.

Fig. 2 Optical cross-correlation setup. The top right inset is a schematic representation of the autocorrelation result in a general case (τ′ ≠ 0) and when the delay between the two arms is an integer number of periods (τ = 0). Γ11 and Γ22 are the autocorrelations of the signals that propagated in each arm and Γ12=ΓΔN12(τ+τi) and Γ21=ΓΔN12(ττi) are the cross-correlation of the two signals with a coarse delay of ΔN periods.

The two XC terms are off-centered except in the case where the delay between the two arms is a multiple of the signal period. If the pulses are well-separated as in the top right inset of Fig. 2, the XCs can be isolated from the autocorrelations and measured directly. Since the devices we characterize here have a small number of cavity modes, the pulses are not well-separated enough to isolate the XCs directly. In order to retrieve the timing-jitter from the measurement we have to fit the expected shape of the autocorrelation to the measurement with the jitter as a fitting parameter. Γ11 and Γ22 can be measured separately by switching off one arm or the other. The noiseless XCs is obtained by assuming that the effect of dispersion, if significant, can be approximated as a convolution with a Gaussian GD. The width of GD is determined by fitting Γ22 * GD to Γ11. Therefore, the expected shape of the XC is Γ22 * GD * G Δ N, where the width of the jitter Gaussian G Δ N is the only unknown. The external fine delay τ′ is tuned so that the total delay between the two arms is a multiple of the period and both XCs overlap around τi = 0 as in the lower right inset of Fig. 2. If we assume a symmetrical shape for the pulses the XCs become identical. A variable optical attenuator (VOA) is used to balance the intensity in both arms. Thus the function we fit to the measurement is:
Γi(τi)=Γ11(τi)+Γ22(τi)+2×Γ22(τi)*GD(τi)*GΔN(τi).
(3)
The width of G ΔN, i.e. the jitter standard deviation ΔNσpp, is the only fitting parameter. Figures 3(a) and 3(b) display, for a Fabry-Perot and for a 6 mode device, the measured and fitted curves as well as the autocorrelation of the intensity in both arms. We can see that, as our pulses are very close to each other, the diminution of the extinction ratio caused by the jitter is more visible than the broadening of the peaks. This is why it is very important to have a well-defined zero and a background free measurement makes this very convenient.

Fig. 3 Measurement of the timing jitter. (a) and (b) display the autocorrelation measurements and data fittings performed with the FP device at 16 m delay (ΔN = 4000) and the 6DM device at 24 m delay (ΔN = 12000) respectively. Γ11 and Γ22 are the autocorrelation of the intensity from each arm separately. ”Data” is the measurement of Γi and ”Fit” is the fitted theoretical curve of Γi. In (c) and (d) the black squares represent the timing variances used to fit the Γi curves for different delays and the red line is a linear fit of those points.

Figures 3(c) and 3(d) display the timing variances measured for different coarse delays. As expected for a white noise pulse-to-pulse jitter, the variance increases linearly as a function of delay with a slope equal to the square of the pulse-to-pulse jitter standard deviation σpp. A linear fit of the data allows us to retrieve the value of σpp. It is 78 fs for the FP device and 20 fs for the 6 mode device. Because of the difference in repetition rate, the timing noise of the FP has to be compared with that of the DM after two periods, which corresponds to a single round trip of the intracavity pulse in both FP and DM. This gives us a jitter of 20×2=28fs, which is significantly less than the value of 78 fs that was measured for the FP. This shows that the patterning of the laser cavity for mode selection does not adversely affect the timing stability of the device. In fact, accounting for the difference in repetition rate, the timing stability is seen to have improved in the 6DM device.

4. RF linewidth

The device with four pre-selected modes that we consider was designed to generate an optical carrier for millimeter-wave signals. This device represents a minimal mode-locked system for such an application, and can be regarded as integrating the functions of passive mode-locking and spectral filtering in a single monolithic device [21

21. S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010). [CrossRef]

]. Because in this case the intensity profile is sinusoidal, the relevant characterization of the timing noise is given by a measurement of the RF or mode-beating linewidth of the signal. As was the case for the timing jitter of pulsed sources, a direct measurement of the intensity is not possible at high repetition rates. A technique to overcome this problem has been recently proposed [28

28. S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010). [CrossRef]

]. The approach is to produce a beating between two single mode tunable lasers and to mix this signal in a semiconductor optical amplifier (SOA) together with the optical beat signal to be measured. Non-linearities due to spectral hole burning and carrier heating generate a slight modulation of the output at a frequency corresponding to the difference between the measured signal and the beating of the single-mode lasers. This modulation is slow enough to be measured with conventional photodiodes. Here we use a similar setup except we do not amplify our signal before mixing it in the SOA.

An optical spectrum of the output of the SOA is displayed in Fig. 4. In the right half of the figure we can see the four modes of the device (two main modes M2 and M3 and two satellites M1 and M4) and on the left we can see the two tunable lasers TL1 and TL2. The wavelength of the tunable lasers are chosen to be half-way between residual modes of the DM device in order to avoid interference. The intensity is measured with a fast photodiode connected to an oscilloscope. A series of 50 μs time traces is recorded by the oscilloscope before being analyzed. The length of the time traces has been chosen so that the wavelengths of the tunable lasers do not have time to drift during the measurement. The Fourier transform of these time traces is fitted with a Lorentzian function as shown in the top left inset of Fig. 4. The spectrum data displayed have been smoothed for clarity. The accuracy of this measurement is limited by the stability of the two tunable lasers. This was determined to be ∼ 200 kHz from a measurement of beating linewidth of their outputs over a 50 μs interval.

Fig. 4 Optical spectrum at the output of the SOA. Inset: Electrical spectrum at the output of the photodiode (narrow blue line), and Lorentzian fit (thick red line).

5. Conclusion

In conclusion, discrete mode lasers with engineered spectra are a promising way to produce optical carriers with tailored intensity profiles. We showed that they are closer to the Fourier limit and have comparable or better timing fluctuations than their FP equivalents fabricated with the same material. A possible explanation for the latter improvement may be that spectral filtering limits dispersion coupled timing fluctuations (so-called Gordon-Haus jitter [29

29. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986). [CrossRef] [PubMed]

]). We expect their performance can be further improved by optimizing the location of the spectral filter with respect to the material gain dispersion, and by optimising the gain and absorber material and the heterostructure design for stable mode-locking.

Appendix

In order to retrieve the timing jitter from the optical XC measurement, pulses are usually considered Gaussian so that the squares of the pulse width and timing standard deviation are additive. The technique we use here is based on the fitting of the data and the Gaussian approximation was not always sufficient. For this reason we include the pulse shape or more exactly its autocorrelation in the calculation. Besides, given the deliberately limited number of optical modes supported by our lasers, the pulses tend to overlap in time. A Fourier series representation of the intensity signal is then more appropriate. In this appendix we derive the theoretical effects of the noise on the XC as it applies to our particular measurement.

During its propagation in the laser cavity, the pulse is constantly subjected to amplitude and timing fluctuations due to spontaneous emission. In the case of passive mode-locking, the deviation from the average position in time J(t) drifts without bound integrating over time the white noise timing fluctuations. J(t) is therefore a random walk. We can define Jτ(t) ≡ J(t + τ) – J(t) as the timing change accumulated over a time τ with a linearly increasing variance <Jτ(t)2>t=τTσpp2. Here σpp is the round trip time standard deviation, and T is the average round trip time.

The noiseless intensity pulse train I 0(t) decomposes in Fourier series as
I0(t)=1TMp˜(MT)e2iπMTt
(4)
where (ν) = [p(t)](ν) is the Fourier transform of the pulse shape. The noisy intensity is I(t) = I 0 (t + J(t)). The autocorrelation of I(t) yields
Γ(τ)=I(t)I(t+τ)t=1T2M|p˜(MT)|2e2iπMTτe2iπMTJτ(t)t
(5)
Jτ(t) being a Gaussian process we have e2iπMTJτ(t)t=e12|2πMTJτ(t)|2t, therefore
Γ(τ)=1T2M|p˜(MT)|2e2iπMTτe2T3(πMσpp)2|τ|
(6)
In order to simplify this formulation we write the delay as the sum of a coarse component ΔN · T, where ΔN is the integer number of periods contained in the delay, and a fine component τ′ so that τ = ΔN · T + τ′. The XC can then be expressed as a function of τ′ around a coarse delay ΔN · T:
ΓΔN(τ)=1T2M|p˜(MT)|2e2iπMΔNe2iπMTτe2T3(τMσpp)2|ΔNT+τ|
(7)
The first exponential is always equal to 1 because M · ΔN is integer while, in the third exponential, the τ′ dependence can be neglected. Therefore we can write the XC around a coarse delay ΔN · T as a convolution of the XC without noise Γ0 and the Gaussian distribution of the timing deviation between two pulses separated by ΔN periods:
ΓΔN(τ)=Γ0(τ)*GΔN(τ)
(8)
with
Γ0(τ)=I0(t)I0(t+τ)t=1T2M|p˜(MT)|2e2iπMTτ
and
GΔN(τ)=1[e2(πνσpp)2ΔN](τ)=12πΔNσppexp(12(τΔNσpp)2).
Experimentally, if the delay τ results from propagation in different lengths of dispersive media the pulses in each arm will experience different broadenings. Thus we define I 1 and I 2 to be the intensities of the pulse streams that propagated in each arm of the cross-correlator and p 1 and p 2 to be the intensity profiles of the individual pulses composing those streams. The XC without jitter then becomes:
Γ012(τ)=1T2Mp˜1(MT)*p˜2(MT)e2iπMTτ
(9)
where * stands for complex conjugate. Following the same steps that led to Eq. (8) we derive the cross-correlation including jitter:
ΓΔN12(τ)=Γ012(τ)*GΔN
(10)
This is the standard cross-correlation measured in [26

26. L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002). [CrossRef]

] and [27

27. J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006). [CrossRef]

] for a coarse delay ΔN · T and a fine delay τ′.

In our setup we measure the autocorrelation of the signal I 1 + I 2 as a function of the internal delay of the autocorrelator τi, while the usual technique measures the cross-correlation of I 1 and I 2 as a function of the fine delay τ′. Here the autocorrelation measured by the autocorrelator is:
Γi(τi)=(I1(t)+I2(t+τ)).(I1(t+τi)+I2(t+τ+τi))t=I1(t)I1(t+τi)+I2(t+τ)I2(t+τ+τi)+I1(t)I2(t+τ+τi)+I2(t+τ)I1(t+τi)t=Γ11(τi)+Γ22(τi)+ΓΔN12(τ+τi)+ΓΔN12(ττi),
(11)
where Γ11 and Γ22 are the autocorrelations of I 1 and I 2 respectively and ΓΔN12 is defined by Eq. (10).

The power spectrum can be found by performing the Fourier transform of Eq. (6):
S(ν)=[Γ(τ)](ν)=1T2M|p˜(MT)|2[e2iπMTτe2T3(πMσpp)2|τ|](ν)=1T2M|p˜(MT)|2δ(νMT)*1(πMσpp)2T3+T3ν2(Mσpp)2.
(12)
From this expression, we see that each mode M is a Lorentzian of FWHM linewidth: ΔνM=2π(Mσpp)2T3.

Acknowledgments

This work was supported by Science Foundation Ireland and Enterprise Ireland. The authors thank Eblana Photonics for the preparation of sample devices.

References and links

1.

J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007). [CrossRef]

2.

H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006). [CrossRef]

3.

G. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007). [CrossRef] [PubMed]

4.

P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006). [CrossRef]

5.

X. Yi, N. K. Fontaine, R. P. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Tech. 28, 2054–2061 (2010). [CrossRef]

6.

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimter wave signals,” J. Lightwave Tech. 21, 2145–2153 (2003). [CrossRef]

7.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Tech. 21, 3043–3051 (2003). [CrossRef]

8.

P. Vasil’ev, Ultrafast Diode Lasers: Fundamentals and Applications (Artech House, 1995).

9.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000). [CrossRef]

10.

C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quantum Electron. 38, 380–389 (2002). [CrossRef]

11.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004). [CrossRef]

12.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11, 103001 (2009). [CrossRef]

13.

L. Hou, M. Haji, J. Akbar, B. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett. 36, 966–968 (2011). [CrossRef] [PubMed]

14.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58, 1253–1255 (1991). [CrossRef]

15.

J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers, Experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 1, 539–551 (1995). [CrossRef]

16.

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse modelocked diode lasers,” Electron. Lett. 33, 1868–1869 (1997). [CrossRef]

17.

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32, 1211–1224 (1996). [CrossRef]

18.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002). [CrossRef]

19.

S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010). [CrossRef]

20.

D. Bitauld, S. Osborne, and S. O’Brien, “Passive harmonic mode-locking by mode selection in Fabry-Perot diode lasers with patterned effective index,” Opt. Lett. 35, 2200–2202 (2010). [CrossRef] [PubMed]

21.

S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010). [CrossRef]

22.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993). [CrossRef]

23.

D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B 14, 167–174 (1997). [CrossRef]

24.

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004). [CrossRef]

25.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986). [CrossRef]

26.

L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002). [CrossRef]

27.

J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006). [CrossRef]

28.

S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010). [CrossRef]

29.

J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986). [CrossRef] [PubMed]

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 26, 2011
Revised Manuscript: June 16, 2011
Manuscript Accepted: June 16, 2011
Published: July 7, 2011

Citation
David Bitauld, Simon Osborne, and Stephen O’Brien, "Timing characterization of 100 GHz passively mode-locked discrete mode laser diodes," Opt. Express 19, 13989-13999 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-13989


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007). [CrossRef]
  2. H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Tech. 24, 4616–4627 (2006). [CrossRef]
  3. G. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007). [CrossRef] [PubMed]
  4. P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, Wangkuen Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Tech. 24, 2701–2719 (2006). [CrossRef]
  5. X. Yi, N. K. Fontaine, R. P. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Tech. 28, 2054–2061 (2010). [CrossRef]
  6. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimter wave signals,” J. Lightwave Tech. 21, 2145–2153 (2003). [CrossRef]
  7. S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Tech. 21, 3043–3051 (2003). [CrossRef]
  8. P. Vasil’ev, Ultrafast Diode Lasers: Fundamentals and Applications (Artech House, 1995).
  9. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-GigaHertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000). [CrossRef]
  10. C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quantum Electron. 38, 380–389 (2002). [CrossRef]
  11. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004). [CrossRef]
  12. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11, 103001 (2009). [CrossRef]
  13. L. Hou, M. Haji, J. Akbar, B. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett. 36, 966–968 (2011). [CrossRef] [PubMed]
  14. Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58, 1253–1255 (1991). [CrossRef]
  15. J. F. Martins-Filho, E. A. Avrutin, C. N. Ironside, and J. S. Roberts, “Monolithic multiple colliding pulse mode-locked quantum-well lasers, Experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 1, 539–551 (1995). [CrossRef]
  16. T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse modelocked diode lasers,” Electron. Lett. 33, 1868–1869 (1997). [CrossRef]
  17. S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron. 32, 1211–1224 (1996). [CrossRef]
  18. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors,” IEEE J. Quantum Electron. 38, 1–11 (2002). [CrossRef]
  19. S. O’Brien, S. Osborne, D. Bitauld, and A. Amann, “Design and applications of discrete mode Fabry-Perot diode lasers,” Photonics Nanostruct. Fundam. Appl. 8, 218–227 (2010). [CrossRef]
  20. D. Bitauld, S. Osborne, and S. O’Brien, “Passive harmonic mode-locking by mode selection in Fabry-Perot diode lasers with patterned effective index,” Opt. Lett. 35, 2200–2202 (2010). [CrossRef] [PubMed]
  21. S. O’Brien, S. Osborne, D. Bitauld, A. Amann, R. Phelan, B. Kelly, and J. O’Gorman, “Optical synthesis of terahertz and millimeter-wave frequencies with discrete mode diode lasers,” IEEE Trans. Microwave Theory Tech. 58, 3083–3087 (2010). [CrossRef]
  22. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993). [CrossRef]
  23. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B 14, 167–174 (1997). [CrossRef]
  24. R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004). [CrossRef]
  25. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986). [CrossRef]
  26. L. A. Jiang, S. T. Wong, M. E. Grein, E. P. Ippen, and H. A. Haus, “Measuring timing jitter with optical cross correlations,” IEEE J. Sel. Top. Quantum Electron. 38, 1047–1052 (2002). [CrossRef]
  27. J. P. Tourrenc, S. O’Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O’Faolain, and T. F. Krauss, “Cross-correlation timing jitter measurement of high power passively mode-locked two section quantum-dot lasers,” IEEE Photonics Tech. Lett. 18, 2317–2319 (2006). [CrossRef]
  28. S. Latkowski, R. Maldonado-Basilio, K. Carney, J. Parra-Cetina, S. Philippe, and P. Landais, “Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers,” Appl. Phys. Lett. 97, 081113 (2010). [CrossRef]
  29. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited