OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14160–14171
« Show journal navigation

Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

Heidi Hofer, Nripun Sredar, Hope Queener, Chaohong Li, and Jason Porter  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14160-14171 (2011)
http://dx.doi.org/10.1364/OE.19.014160


View Full Text Article

Acrobat PDF (1483 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains.

© 2011 OSA

1. Introduction

Adaptive optics correction of the eye’s optical aberrations enables high-resolution retinal imaging and measurement of visual function on a cellular level in living human eyes [1

1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef] [PubMed]

7

7. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010). [CrossRef] [PubMed]

]. Adaptive optics has been successfully incorporated in numerous ocular imaging modalities [8

8. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [PubMed]

12

12. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011). [CrossRef] [PubMed]

] and has generated great potential for learning about, diagnosing, and treating diseases that impact the retina [13

13. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004). [CrossRef] [PubMed]

17

17. Y. Kitaguchi, S. Kusaka, T. Yamaguchi, T. Mihashi, and T. Fujikado, “Detection of photoreceptor disruption by adaptive optics fundus imaging and Fourier-domain optical coherence tomography in eyes with occult macular dystrophy,” Clin. Ophthalmol. 5, 345–351 (2011). [CrossRef] [PubMed]

]. Despite this potential, clinical translation and routine use of this technique outside the research laboratory has been slow.

A key feature of current adaptive optics systems for the human eye is a wavefront sensor that measures the eye’s aberrations and is coupled in a closed feedback loop to a correcting element, such as a deformable mirror or liquid crystal spatial light modulator [18

18. N. Doble, “High-resolution, in vivo retinal imaging using adaptive optics and its future role in ophthalmology,” Expert Rev. Med. Devices 2(2), 205–216 (2005). [CrossRef] [PubMed]

]. In addition to increasing system complexity and cost, noise and fidelity of the wavefront sensor place a fundamental limit on achievable image quality, since accurate aberration correction requires accurate measurement. This limit may be particularly adverse in the clinical environment, for patients with ocular pathology (such as cataracts or keratoconus), or in any other high noise situation (such as wavefront sensing with restricted light levels). A wavefront sensorless correction method, where image quality is directly optimized based on physical properties of the image, would be immune to noise or errors in the wavefront sensing process (as well as non-common path errors between the wavefront sensor and image plane), and could be highly advantageous.

Wavefront sensorless correction methods have been developed and investigated in microscopy and other photonic engineering applications [19

19. M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007). [CrossRef] [PubMed]

] but there has been little exploration of these methods in ocular adaptive optics [20

20. D. P. Biss, R. H. Webb, Z. Yaopeng, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE 6467, 646703, 646708 (2007). [CrossRef]

,21

21. S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett. 31(7), 939–941 (2006). [CrossRef] [PubMed]

] and they have not been applied to image the retina of the human eye. Here we demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye, with image quality rivaling that of wavefront sensor based control in the same system. Future refinements of this technique may result in simpler, less expensive adaptive optics systems that operate at lower light levels, potentially paving the way for faster clinical translation and increased scientific utility of this technology.

2. Methods

2.1 Wavefront sensorless control

Many sensorless adaptive optics control algorithms and image quality metrics have been described and evaluated [19

19. M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007). [CrossRef] [PubMed]

24

24. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009). [CrossRef] [PubMed]

]. Our approach was to implement an iterative stochastic parallel gradient descent (SPGD) algorithm [22

22. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19(2), 356–368 (2002). [CrossRef] [PubMed]

] to directly control the 140 actuator space of a microelectromechanical systems (MEMS) deformable mirror (Boston Micromachines Inc., Cambridge, MA) in an AOSLO [25

25. C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010). [CrossRef] [PubMed]

] to maximize the mean intensity in the acquired retinal image frames (Fig. 1
Fig. 1 Schematic diagram of the AOSLO [25] that consists of a Shack-Hartmann wavefront sensor (SHWFS), a 52-actuator woofer mirror (Mirao 52-e, Imagine Eyes, Inc., France), and a 140-actuator tweeter mirror (Multi-DM MEMS mirror, Boston Micromachines Inc., Cambridge, MA), all in pupil conjugate planes. 840 nm light (superluminescent diode (SLD); Superlum, Ireland) enters the eye’s pupil through a maximum diameter of 8 mm and is scanned (vertical scanner, VS; horizontal scanner, HS) over a 1.5 X 1.5 deg patch of retina. The reflected light is descanned as it propagates back through the system and ~20% is diverted to the SHWFS while the remaining light is focused through a 75 micron confocal pinhole (1.4’, ~1.6 X the width of the Airy disk with an 8 mm pupil) to a photomultiplier tube (PMT) for retinal imaging. One PC performs wavefront sensing and mirror control (AO PC), a second PC acquires and records retinal image sequences (SLO PC). The PCs operate independently during wavefront sensor based control but must communicate during sensorless control (SAO). An open loop correction of lower order aberrations (primarily defocus) is placed on the woofer mirror with the SHWFS prior to initiating closed loop correction with both control methods.
). The mean image frame intensity is the average light reflected from the retina that passes through the confocal pinhole (75 microns, angular subtense ~1.4’) averaged over the system field of view (1.5 deg) during the frame exposure time (35 ms). This is an appropriate image quality metric since improving the optical correction yields a more compact point-spread function that enables more light to be collected through the confocal pinhole [26

26. T. Wilson, “The role of the pinhole in confocal imaging systems,” in Handbook of Biological Confocal Microscopy. Pawley, J. B., ed. (Plenum Press, New York, 1995).

].

The AOSLO is a dual-mirror system that employs a ‘woofer’ (Mirao 52-e, Imagine Eyes, Inc., France) to correct lower order aberrations and a ‘tweeter’ (MEMS) to correct higher order aberrations [25

25. C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010). [CrossRef] [PubMed]

]. (This woofer-tweeter arrangement is required since the MEMS mirror alone lacks sufficient stroke to correct individuals with significant refractive error [27

27. N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007). [CrossRef] [PubMed]

].) Prior to initiating adaptive optics control on the MEMS mirror, we used a Shack-Hartmann wavefront sensor to drive the correction of lower order aberrations (primarily defocus) with the ‘woofer’ mirror. The ‘woofer’ mirror was then held static while sensorless or wavefront sensor based control was implemented dynamically on the ‘tweeter’ mirror.

2.2 Wavefront sensor based control and non-common path error calibration

Wavefront sensor based control used a simple integrator (gain = 0.5) and a direct slope algorithm [29

29. W. Jiang and H. Li, “Hartmann-Shack Wavefront Sensing and Control Algorithm,” in Adaptive Optics and Optical Structures. Proceedings of the SPIE, Schulte-in-den-Baeumen, J.J., Tyson, R. K., eds. (SPIE 1990) 1271: 82–93.

] to control the tweeter mirror (MEMs) at a rate of 10.5 Hz. This rate was predominantly determined by the wavefront sensor camera exposure and frame readout times (Rolera-XR, QImaging, Surrey, British Columbia). Sensorless adaptive optics allowed measurement and calibration of the non-common path errors between the wavefront sensor and imaging arms of the AOSLO. Calibration was accomplished by performing sensorless correction on a static model eye (consisting of a lens with a black matte reflecting surface in the nominal focal plane), and then using the Shack-Hartmann spot positions recorded during this empirically corrected state as the reference positions for subsequent wavefront sensor based correction. The rms wavefront error of the non-common path error obtained in this manner was 0.05 microns over the system pupil, and was dominated by defocus (0.04 microns). Figure 3
Fig. 3 Sensorless adaptive optics control performance and non-common path error correction for wavefront sensor based adaptive optics in a model eye. Image intensities were 50% higher with sensorless control (SAO) than with traditional wavefront sensor based control (WFS AO pre-calibration). After using sensorless adaptive correction to calibrate for non-common path errors between the PMT and SHWFS (total rms wavefront error ~0.05 microns over the system pupil), the performance of wavefront sensor based control (WFS AO post-calibration) improved to the level of sensorless control. Error bars are ±1 standard deviation of the mean image frame intensity after convergence. Note that absolute intensity cannot be compared with that in Fig. 2b. due to different adjustments of the PMT gain between the two data sets.
shows the result of this calibration in the model eye: before calibration, the sensorless method outperformed wavefront sensor based control, while both methods performed comparably after calibration. This calibration for non-common path errors ensured that the comparatively good performance of sensorless adaptive optics we observed was not due to suboptimal wavefront sensor based control or factors such as misalignment of the confocal pinhole.

2.3 Subjects

2.4 Experimental comparison of wavefront sensorless and wavefront sensor based control

3. Results

3.1 Comparison of AOSLO image quality with sensorless and wavefront sensor based control

The good performance of sensorless adaptive optics is also evident when imaging through natural, undilated pupils (e.g., 4-6 mm). In this case, sensorless control performs as well as wavefront sensor based control in terms of subjective image quality and mean image intensity (shown in Fig. 5). Results for all subjects were similar, with sensorless correction even allowing individual photoreceptors to be resolved in one subject whose small natural pupil (3 mm) precluded successful wavefront sensor based correction (presumably due to the difficulty in obtaining an accurate mirror control signal from a severely reduced set of Shack-Hartmann spots, Fig. 6
Fig. 6 Sensorless adaptive optics allowed clear images of individual photoreceptors to be acquired in one subject (S.62) when the pupil was sufficiently small (3 mm) as to prevent wavefront sensor based correction. Location and image details are the same as for Figs. 4 & 5. Scale bar is 10’.
). The robust performance of sensorless adaptive optics for natural optics and pupils that underfill the AOSLO’s entrance aperture (8 mm) suggests that sensorless methods may require less precise head stabilization and reduce the need for pharmacological pupil dilation, features that would be highly advantageous in a clinically deployed system.

Since the image quality metric in our sensorless control implementation is the light transmitted through the confocal pinhole averaged over the image frame duration (35ms), the size of the confocal pinhole places a limit on the maximum optical quality that can be achieved. Once the optical correction is sufficiently good so that all (or nearly all) of the light is focused through the pinhole, further improvements in optical quality will no longer result in increases in light intensity, and will therefore not be effective at driving the sensorless algorithm. We used a confocal pinhole subtending 1.4’ at the retina which is ~1.6 X the Airy disk diameter at 840 nm with an 8 mm pupil. The good performance we achieved with this relatively large pinhole diameter suggests that even greater gains in contrast might be achievable with smaller confocal pinholes [26

26. T. Wilson, “The role of the pinhole in confocal imaging systems,” in Handbook of Biological Confocal Microscopy. Pawley, J. B., ed. (Plenum Press, New York, 1995).

].

4. Discussion

4.1 Challenges in implementing wavefront sensorless adaptive optics in the human eye

The living human eye poses several unique characteristics that make it challenging to successfully implement wavefront sensorless adaptive optics techniques. Typically, wavefront sensorless correction methods have been implemented in situations where aberrations and the specimen being imaged are essentially static (e.g., in microscopy) [19

19. M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007). [CrossRef] [PubMed]

, 22

22. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19(2), 356–368 (2002). [CrossRef] [PubMed]

24

24. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009). [CrossRef] [PubMed]

]. This is quite unlike the situation in the living eye, where aberrations and tear film quality are inherently dynamic [30

30. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001). [CrossRef] [PubMed]

] and eye movements create constant motion of the retina with respect to the imaging sensor. The dynamics of the eye’s aberrations are exacerbated by the difficulty of stabilizing patients’ pupils with respect to the optical system, while eye movements create the possibility that differences in intensity due to the spatial structure of the retina could create spurious differences in the intensity metric used for the sensorless control signal. These dynamics are especially problematic given the relatively large number of iterations that are required for correction with sensorless methods. Blinking presents an additional challenge and requires an algorithm that is insensitive to intermittent signal loss. Despite these challenges, we have demonstrated that sensorless control can be successfully implemented in the living human eye with performance comparable to that achieved with wavefront sensor based control. Importantly, our sensorless adaptive optics implementation required no changes to the hardware or optical configuration of the existing AOSLO. Therefore, our results should be easily replicable in other confocal systems (or non-confocal adaptive optics systems where double-pass pointspread function imaging is enabled) with only relatively simple software changes in the mirror control algorithm. Future increases in speed and performance may be achieved with a number of further hardware and software modifications, for example by using the time averaged PMT signal directly and integrating over a shorter interval of time (using smaller frames, or fractions of frames), using a smaller number of mirror modes to control the mirror (rather than the 140 individual actuators), or by using an adjustable pinhole or detector with flexible integration area. The latter strategy may also be beneficial when correcting highly aberrated eyes in a wavefront sensorless system, as the pinhole size (or detector integration area) places a minimum requirement on optical quality to allow sufficient intensity to initiate correction. (An initial scan through focus is another potential solution.)

The sensorless adaptive optics implementation we present here has the additional property that it automatically focuses on the most reflective retinal layer. While this may be advantageous in photoreceptor imaging or fluorescence imaging, it presents a further challenge for confocal applications that require imaging different retinal layers. One could imagine several future strategies that, if pursued, might allow sensorless control to be compatible with optical sectioning applications. For example, with a rapid enough mirror, one could alternate frames used for sensorless control with imaging frames containing an appropriate defocus increment. It may also be possible to run sensorless control with reduced gain to maintain focus at a local intensity maximum corresponding to a non-photoreceptor layer.

4.2 Advantages of wavefront sensorless adaptive optics in the human eye

The results shown in Figs. 4-7 indicate that, despite the significant challenges, sensorless adaptive optics is a viable method in the living human eye. Despite lower mean image intensities (in 4 of our 5 subjects), sensorless correction produced retinal images with higher contrast in dilated pupils. Sensorless control could also be beneficial with small or undilated pupils and may succeed in individuals for whom wavefront sensing is not possible (Fig. 6). This suggests that sensorless control may be particularly valuable in a clinical system or for patients with ocular pathology (such as cataracts or keratoconus), for whom traditional wavefront sensor based adaptive optics is difficult. Sensorless adaptive optics has additional advantages. First, sensorless control has the potential to achieve better optical quality than wavefront sensor based control because it is insensitive to wavefront sensor noise and infidelity (including the mirror ‘edge artifact’ [31

31. J. Porter, H. Queener, J. Lin, K. Thorne, and A. Awwal, eds., Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications Ch. 5 (John Wiley and Sons, Inc., New Jersey, 2006).

]), and contains no non-common path errors. The automatic correction of system aberrations and absence of non-common path errors is a significant benefit -– not only can it result in higher optical quality, but it confers an insensitivity to alignment errors, which would be particularly advantageous in clinically deployed systems. Moreover, sensorless adaptive optics enables straightforward, objective measurement and compensation of the non-common path errors inherent in wavefront sensor based systems (Fig. 3). Second, sensorless control requires less light for aberration correction and retinal imaging since no light is diverted from the image for wavefront sensing and all of the light returning from the eye is focused to only a single spot, rather than split up into hundreds of spots (as in a typical Shack-Hartmann wavefront sensor). Lower light levels might be especially advantageous when imaging in light-sensitive patients, such as those suffering from rhodopsin disorders in retinitis pigmentosa [32

32. A. V. Cideciyan, S. G. Jacobson, T. S. Aleman, D. Gu, S. E. Pearce-Kelling, A. Sumaroka, G. M. Acland, and G. D. Aguirre, “In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa,” Proc. Natl. Acad. Sci. U.S.A. 102(14), 5233–5238 (2005). [CrossRef] [PubMed]

], and for applications, such as autofluoresence imaging [11

11. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006). [CrossRef] [PubMed]

], where sensorless control may confer additional benefit by allowing direct optimization of the fluorescence signal. Elimination of the wavefront sensor’s “laser beacon” would also prevent any potential visual interference when presenting visual stimuli in functional experiments, enabling the full realization of adaptive optics’ potential to uncover the most sensitive retinal and neural limits on vision. Lastly, since sensorless adaptive optics does not require a wavefront sensor, a sensorless system would be simpler, cheaper, and more robust than current adaptive optics retinal imaging systems.

4. Conclusion

Acknowledgements

This work was supported by National Institutes of Health Grants RO1 EY019069 and P30 EY07551, the Texas Advanced Research Program under Grant No. G096152, and the University of Houston College of Optometry. Single mirror wavefront sensor based control software was partially developed by Alfredo Dubra-Suarez, funded by a Career Award from the Burroughs Wellcome Fund, and Kamran Ahmad, with funding from NIH grant BRP-EY01437 and the NSF Science and Technology Center for Adaptive Optics.

References and links

1.

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef] [PubMed]

2.

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999). [CrossRef] [PubMed]

3.

H. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vis. 5(5), 444–454 (2005). [CrossRef] [PubMed]

4.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Vis. Sci. 47(9), 4160–4167 (2006). [CrossRef] [PubMed]

5.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009). [CrossRef] [PubMed]

6.

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010). [CrossRef] [PubMed]

7.

R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010). [CrossRef] [PubMed]

8.

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [PubMed]

9.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004). [CrossRef] [PubMed]

10.

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006). [CrossRef] [PubMed]

11.

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006). [CrossRef] [PubMed]

12.

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011). [CrossRef] [PubMed]

13.

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004). [CrossRef] [PubMed]

14.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014–1019 (2006). [CrossRef] [PubMed]

15.

K. E. Talcott, K. Ratnam, S. M. Sunquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic growth factor,” Invest. Ophthalmol. Vis. Sci. 52(5), 2219–2226 (2011). [CrossRef]

16.

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800.e1–1809.e2 (2010). [CrossRef] [PubMed]

17.

Y. Kitaguchi, S. Kusaka, T. Yamaguchi, T. Mihashi, and T. Fujikado, “Detection of photoreceptor disruption by adaptive optics fundus imaging and Fourier-domain optical coherence tomography in eyes with occult macular dystrophy,” Clin. Ophthalmol. 5, 345–351 (2011). [CrossRef] [PubMed]

18.

N. Doble, “High-resolution, in vivo retinal imaging using adaptive optics and its future role in ophthalmology,” Expert Rev. Med. Devices 2(2), 205–216 (2005). [CrossRef] [PubMed]

19.

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007). [CrossRef] [PubMed]

20.

D. P. Biss, R. H. Webb, Z. Yaopeng, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE 6467, 646703, 646708 (2007). [CrossRef]

21.

S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett. 31(7), 939–941 (2006). [CrossRef] [PubMed]

22.

M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19(2), 356–368 (2002). [CrossRef] [PubMed]

23.

J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609–620 (2003). [CrossRef] [PubMed]

24.

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009). [CrossRef] [PubMed]

25.

C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010). [CrossRef] [PubMed]

26.

T. Wilson, “The role of the pinhole in confocal imaging systems,” in Handbook of Biological Confocal Microscopy. Pawley, J. B., ed. (Plenum Press, New York, 1995).

27.

N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007). [CrossRef] [PubMed]

28.

W. Zou, X. Qi, and S. A. Burns, “Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm,” Biomed. Opt. Express 2(7), 1986–2004 (2011). [CrossRef] [PubMed]

29.

W. Jiang and H. Li, “Hartmann-Shack Wavefront Sensing and Control Algorithm,” in Adaptive Optics and Optical Structures. Proceedings of the SPIE, Schulte-in-den-Baeumen, J.J., Tyson, R. K., eds. (SPIE 1990) 1271: 82–93.

30.

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001). [CrossRef] [PubMed]

31.

J. Porter, H. Queener, J. Lin, K. Thorne, and A. Awwal, eds., Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications Ch. 5 (John Wiley and Sons, Inc., New Jersey, 2006).

32.

A. V. Cideciyan, S. G. Jacobson, T. S. Aleman, D. Gu, S. E. Pearce-Kelling, A. Sumaroka, G. M. Acland, and G. D. Aguirre, “In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa,” Proc. Natl. Acad. Sci. U.S.A. 102(14), 5233–5238 (2005). [CrossRef] [PubMed]

OCIS Codes
(000.3860) General : Mathematical methods in physics
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: April 14, 2011
Revised Manuscript: June 26, 2011
Manuscript Accepted: June 27, 2011
Published: July 11, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Heidi Hofer, Nripun Sredar, Hope Queener, Chaohong Li, and Jason Porter, "Wavefront sensorless adaptive optics ophthalmoscopy in the human eye," Opt. Express 19, 14160-14171 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14160


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  2. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999). [CrossRef] [PubMed]
  3. H. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vis. 5(5), 444–454 (2005). [CrossRef] [PubMed]
  4. W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Vis. Sci. 47(9), 4160–4167 (2006). [CrossRef] [PubMed]
  5. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009). [CrossRef] [PubMed]
  6. E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010). [CrossRef] [PubMed]
  7. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010). [CrossRef] [PubMed]
  8. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [PubMed]
  9. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004). [CrossRef] [PubMed]
  10. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006). [CrossRef] [PubMed]
  11. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006). [CrossRef] [PubMed]
  12. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011). [CrossRef] [PubMed]
  13. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004). [CrossRef] [PubMed]
  14. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014–1019 (2006). [CrossRef] [PubMed]
  15. K. E. Talcott, K. Ratnam, S. M. Sunquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic growth factor,” Invest. Ophthalmol. Vis. Sci. 52(5), 2219–2226 (2011). [CrossRef]
  16. S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800.e1–1809.e2 (2010). [CrossRef] [PubMed]
  17. Y. Kitaguchi, S. Kusaka, T. Yamaguchi, T. Mihashi, and T. Fujikado, “Detection of photoreceptor disruption by adaptive optics fundus imaging and Fourier-domain optical coherence tomography in eyes with occult macular dystrophy,” Clin. Ophthalmol. 5, 345–351 (2011). [CrossRef] [PubMed]
  18. N. Doble, “High-resolution, in vivo retinal imaging using adaptive optics and its future role in ophthalmology,” Expert Rev. Med. Devices 2(2), 205–216 (2005). [CrossRef] [PubMed]
  19. M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007). [CrossRef] [PubMed]
  20. D. P. Biss, R. H. Webb, Z. Yaopeng, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE 6467, 646703, 646708 (2007). [CrossRef]
  21. S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett. 31(7), 939–941 (2006). [CrossRef] [PubMed]
  22. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19(2), 356–368 (2002). [CrossRef] [PubMed]
  23. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609–620 (2003). [CrossRef] [PubMed]
  24. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009). [CrossRef] [PubMed]
  25. C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010). [CrossRef] [PubMed]
  26. T. Wilson, “The role of the pinhole in confocal imaging systems,” in Handbook of Biological Confocal Microscopy. Pawley, J. B., ed. (Plenum Press, New York, 1995).
  27. N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007). [CrossRef] [PubMed]
  28. W. Zou, X. Qi, and S. A. Burns, “Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm,” Biomed. Opt. Express 2(7), 1986–2004 (2011). [CrossRef] [PubMed]
  29. W. Jiang and H. Li, “Hartmann-Shack Wavefront Sensing and Control Algorithm,” in Adaptive Optics and Optical Structures. Proceedings of the SPIE, Schulte-in-den-Baeumen, J.J., Tyson, R. K., eds. (SPIE 1990) 1271: 82–93.
  30. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001). [CrossRef] [PubMed]
  31. J. Porter, H. Queener, J. Lin, K. Thorne, and A. Awwal, eds., Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications Ch. 5 (John Wiley and Sons, Inc., New Jersey, 2006).
  32. A. V. Cideciyan, S. G. Jacobson, T. S. Aleman, D. Gu, S. E. Pearce-Kelling, A. Sumaroka, G. M. Acland, and G. D. Aguirre, “In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa,” Proc. Natl. Acad. Sci. U.S.A. 102(14), 5233–5238 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited