OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 15 — Jul. 18, 2011
  • pp: 14233–14239
« Show journal navigation

Silicon-based monolithic optical frequency comb source

Mark A. Foster, Jacob S. Levy, Onur Kuzucu, Kasturi Saha, Michal Lipson, and Alexander L. Gaeta  »View Author Affiliations


Optics Express, Vol. 19, Issue 15, pp. 14233-14239 (2011)
http://dx.doi.org/10.1364/OE.19.014233


View Full Text Article

Acrobat PDF (1262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the generation of broad-bandwidth optical frequency combs from a CMOS-compatible integrated microresonator. We characterize the comb quality using a novel self-referencing method and verify that the comb line frequencies are equidistant over a bandwidth of 115 nm (14.5 THz), which is nearly an order of magnitude larger than previous measurements.

© 2011 OSA

1. Introduction

Optical frequency combs enable the precise measurement of optical frequencies through direct referencing to microwave atomic clocks. Future atomic clockwork is expected to utilize optical frequency combs to transfer the rapid oscillations of optical frequency standards to measurable microwave frequency ranges [1

1. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002). [CrossRef] [PubMed]

3

3. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000). [CrossRef] [PubMed]

]. Combs are traditionally generated using mode-locked ultrafast laser sources. Recently, the generation of optical frequency combs through the nonlinear process of continuous-wave optical-parametric oscillation using micro-scale resonators has attracted significant interest [4

4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef] [PubMed]

10

10. P. Del’Haye, T. Herr, E. Gavartin, R. Holzwarth, and T. J. Kippenberg, “Octave spanning frequency comb on a chip,” arXiv:0912.4890v1 (2009), http://arxiv.org/abs/0912.4890.

] since these devices have the potential to yield highly compact and frequency agile comb sources. The microresonator structures include silica microtoroids, silica microspheres, silica-fiber Fabry-Perot cavities, and CaF2 microresonators [4

4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef] [PubMed]

10

10. P. Del’Haye, T. Herr, E. Gavartin, R. Holzwarth, and T. J. Kippenberg, “Octave spanning frequency comb on a chip,” arXiv:0912.4890v1 (2009), http://arxiv.org/abs/0912.4890.

]. These demonstrations have yielded impressive results including the generation of spectral bandwidths up to 150 THz (octave-spanning) with a comb spacing of 850 GHz [10

10. P. Del’Haye, T. Herr, E. Gavartin, R. Holzwarth, and T. J. Kippenberg, “Octave spanning frequency comb on a chip,” arXiv:0912.4890v1 (2009), http://arxiv.org/abs/0912.4890.

], as well as with spacing’s as small as 14 GHz but with a reduced bandwidth of 3.7 THz [7

7. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009). [CrossRef] [PubMed]

]. The frequency spacing of the comb generated in microtoroids was found to be equidistant to 7 × 10−18 relative to the optical frequency [4

4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef] [PubMed]

]. Additionally, stabilization of a microtoroid comb to a microwave source was demonstrated by controlling the pump laser power and frequency in a feedback loop [5

5. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008). [CrossRef] [PubMed]

].

While the full dynamics of parametric comb generation is highly complex and resonator specific [9

9. I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17(18), 16209–16215 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16209. [CrossRef] [PubMed]

,11

11. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104(10), 103902 (2010). [CrossRef] [PubMed]

13

13. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010). [CrossRef]

], the fundamental mechanism is shared by all geometries. This mechanism relies on a combination of optical parametric amplification and oscillation as a result of the nonlinear optical process of four-wave mixing (FWM) within the resonator [14

14. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). [CrossRef] [PubMed]

16

16. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4881. [CrossRef] [PubMed]

]. Specifically, a single pump laser is tuned to a cavity resonance, and the resulting parametric amplification provides optical gain for the surrounding spectral modes. With sufficient pump power the amplification exceeds the round-trip loss and some of the modes undergo oscillation. The presence of multiple oscillating frequencies leads to FWM that generates light in additional modes. This frequency conversion combined with parametric amplification can lead to a vast cascading of the oscillating frequencies and due to energy conservation the newly generated frequencies are precisely equidistant.

Here we demonstrate the generation of optical frequency combs from a highly-robust CMOS-compatible integrated microresonator optical parametric oscillator [17

17. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]

20

20. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” arXiv:1103.2330v1 (2011) http://arxiv.org/abs/1103.2330.

]. Both the microresonator and the coupling waveguide are fabricated monolithically in a single silicon nitride layer using electron-beam lithography and subsequently clad with silica. Existing microresonator comb sources require coupling with fragile and mechanically sensitive tapered or cleaved optical fibers and operation in sealed environments to avoid contaminants, whereas our system yields a fully-monolithic and sealed device with coupling and operation that is insensitive to the surrounding environment.

2. Frequency Comb Generation

An example of the type of structures we employ is the 112-μm-radius microring resonator shown in Fig. 1(a)
Fig. 1 CMOS-Compatible Optical Frequency Comb Source. (a) A single pump laser is coupled into the CMOS-compatible silicon nitride microresonator (µOPO) shown in the optical micrograph. A highly nonlinear interaction resulting in four-wave mixing and optical parametric oscillation leads to a vast multiplication of the oscillating frequencies and the generation of an optical frequency comb. (b) Simulated group-velocity dispersion (GVD) of the 750-nm tall by 1500-nm wide silicon nitride waveguide that forms the microresonator. (c) Experimentally measured optical frequency comb generated in this device. The comb spans 75 THz and has a line spacing of 204 GHz, which corresponds to more than 350 lines that are generated.
. The free-spectral range of the resonator is 204 GHz, and the loaded quality factor Q of the resonator is measured to be 3 × 105. The cross-sectional dimensions of the coupling waveguide and the ring are both given by 750-nm tall by 1500-nm wide. As shown in Fig. 1(b), these dimensions are carefully designed to produce anomalous group-velocity dispersion at the pump wavelength of 1550 nm [21

21. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-3853. [CrossRef] [PubMed]

,22

22. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4357. [CrossRef] [PubMed]

], and the microring is fabricated as previously described [17

17. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]

]. We inject 300 mW from a tunable diode laser amplified by an erbium-doped fiber amplifier into the coupling waveguide. The polarization of this pump laser is set to the quasi-TE mode of the waveguide, and the laser is tuned onto resonance such that a stable “thermal-lock” is achieved [5

5. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008). [CrossRef] [PubMed]

]. As the pump laser is tuned into resonance, the parametric oscillation threshold is reached and cascaded FWM generates an array of new frequencies. Further increase of the pump power within the resonator yields a greater spectral extent and density of comb, and an example spectrum is shown in Fig. 1(c). We observe the generation of more than 350 comb lines spanning over 75 THz (1375 nm to 2100 nm) and spaced by 204 GHz.

For precision measurement, it is desirable to stabilize the DC-offset frequency of the optical frequency comb. The most common method by which to stabilize this parameter is to implement a self-referencing scheme in the form of an f-2f interferometer. This method requires the frequency comb to span an octave in bandwidth, an extent which was recently observed in silica microtoroids [10

10. P. Del’Haye, T. Herr, E. Gavartin, R. Holzwarth, and T. J. Kippenberg, “Octave spanning frequency comb on a chip,” arXiv:0912.4890v1 (2009), http://arxiv.org/abs/0912.4890.

]. The current 75-THz span of our comb is sufficient to implement a 2f-3f interferometer [23

23. T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, “Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecondoscillator,” Opt. Lett. 27(20), 1842–1844 (2002). [CrossRef] [PubMed]

], and we expect to achieve octave-spanning bandwidth in future CMOS-compatible devices by a combination of improved dispersion engineering [22

22. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4357. [CrossRef] [PubMed]

] and increased pump power.

3. Characterization of Comb Quality

For applications in metrology, the generated optical frequencies must be precisely equidistant. Lines generated through cascaded FWM obey this spacing. However, components can also arise from independent oscillations and may not lie on this equidistant comb. Therefore, it is critical to verify that the generated lines represent an equidistant optical frequency comb.

3.1 Multi-Heterodyne Beat-Note Detection

To test for this equidistance, we first implement multi-heterodyne beat-note detection with a 38-MHz reference comb from a mode-locked laser. This technique was previously used to characterize the equidistance of silica microtoroid combs [4

4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef] [PubMed]

]. We implement multi-heterodyne beat note detection as follows. The pump laser is tuned onto resonance such that a dense optical frequency comb is generated, and the pump laser is then locked to a single comb line of the 38-MHz reference comb. We filter out six consecutive generated lines from the microresonator comb in the range of 1555 nm to 1564 nm as shown in Fig. 2(a)
Fig. 2 Multi-Heterodyne Beat Note Detection. (a) Six consecutive comb lines from 1555 nm to 1564 nm are used to perform multi-heterodyne beat-note detection with a 38-MHz reference comb from a mode-locked fiber laser. (b) The six heterodyne beat notes are measured simultaneously with an RF spectrum analyzer. The equidistance of the RF beat notes verifies the equidistance of the six comb modes to within the measurement accuracy of 10 kHz.
. These six lines are combined with the reference comb and the beat notes are detected using a 10-GHz-bandwidth photodetector. If the spacing of the microresonator comb is nearly but not exactly an integer multiple of the reference comb spacing, then the RF spectrum measured from the photodetector will show a series of six beat-notes. These tones correspond to the difference in frequency between each of the microresonator comb lines and a nearby tooth of the reference comb. Therefore, the equidistance of the observed RF tones verifies that the comb lines are uniformly spaced in frequency.

The generated RF-spectrum for our measurement is shown in Fig. 2(b), and we find the beat notes equidistant to within the measurement accuracy of 10 kHz. This corresponds to better than 9.7 × 10−9 relative to the spectral range of the measurement and better than 5.2 × 10−11 relative to the optical frequency. The results of this measurement are comparable to the results of the same measurement carried out on silica-microtoroids [4

4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef] [PubMed]

].

3.2 Parametric Comb Folding

Parametric comb folding is implemented as follows (see Fig. 3
Fig. 3 Experimental diagram of parametric comb folding. A frequency counter is used to measure the ratio of the offset lock frequency and the beat note between the original and folded comb lines generated through FWM in a HNLF.
). A continuous-wave transfer laser is offset-locked to one of the lines of the microresonator comb under test. This transfer laser is amplified and combined with the comb under test in a highly nonlinear fiber. The strong transfer laser serves as a degenerate pump for four-wave-mixing frequency conversion in the nonlinear fiber. This process converts all the comb lines from one side of the transfer laser to the other side (and vice-versa) such that the newly generated lines are symmetric about the transfer laser (see Fig. 3a). In this way, the transfer laser effectively folds the comb in half about the transfer laser frequency. If the comb under test is symmetric about this frequency then the beat notes measured between the original lines and the generated lines will be twice the beat note between the transfer laser and the comb line it is locked with. Comparing these frequencies using a frequency counter in ratio mode allows for the precise measurement of the comb symmetry about this frequency. The deviation from symmetry is defined as the how far each folded comb line is from the ideal symmetric position. This deviation is calculated by taking the difference between the measured frequency ratio and the expected value of two and multiplying by the comb line offset lock frequency (5 MHz in this work). To determine that the comb not simply symmetric but is in fact equidistant, we measure the symmetry about two more frequencies (7 and 10 comb lines away from this initial frequency). Three measurement points with no common factors in the separation is critical to eliminate the possibility of periodic symmetry.

The results of this measurement are shown in Fig. 4
Fig. 4 Parametric Comb Folding. (a) A strong transfer laser is locked to one line of the comb under test. The comb and the transfer laser are combined and sent through a highly nonlinear fiber where four-wave mixing frequency conversion takes place. This frequency conversion process converts the lines on one side of the transfer laser to the other and vice versa, thereby effectively folding the comb about the transfer laser frequency. By comparing the beat frequency between the original comb lines and the folded lines, the symmetry of the comb about the transfer frequency is determined with high precision. (b) Experimental symmetry measurements for the transfer laser locked to the comb center, 7th line from center and 10th line from center. In all cases the comb is symmetric to better than 0.5 Hz over the full 115-nm range of the measurement. These three measurement points with no common factors eliminate the possibility of simple symmetry and periodic symmetry indicating that the lines are indeed equidistant. This characterization involved 2560 individual measurements on 70 comb lines.
. The deviation from symmetry across the 115-nm bandwidth is shown for three different symmetry wavelengths. The center of the comb (1545 nm) and 7 and 10 comb lines away (1557 nm and 1562 nm). In all cases, the deviation from symmetry is less than 0.5 Hz over the 115-nm (14.5 THz) span of the measurement. This corresponds to a comb equidistance of 3 × 10−14 relative to the measurement range and 3 × 10−15 relative to the optical frequency.

4. Conclusions

We have demonstrated the generation of broad-bandwidth (75-THz) optical frequency combs from a highly-robust and compact CMOS-compatible microresonator. We developed a new technique to precisely characterize the generated comb and verified the mode equidistance of a 115-nm (14.5 THz) span to better than 3 × 10−15 relative to the optical frequency. Based on these results and the compatibility with CMOS electronics, this extremely compact source can serve as a fully chip-scale replacement for relatively bulky mode-locked lasers in many precision frequency metrology and ultrafast photonic applications. In particular, this robust source is ideal for applications where large comb tooth separation are desired such as the calibration of astronomical spectrographs [24

24. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007). [CrossRef]

26

26. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]

], line-by-line pulse shaping [20

20. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” arXiv:1103.2330v1 (2011) http://arxiv.org/abs/1103.2330.

,27

27. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005). [CrossRef] [PubMed]

], and ultra-high-speed communications systems.

Acknowledgments

This work was supported by DARPA under the POPS and OAWG programs and by the Center for Nanoscale Systems, supported by the NSF and the New York State Office of Science, Technology and Academic Research. This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765).

References and links

1.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002). [CrossRef] [PubMed]

2.

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003). [CrossRef]

3.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000). [CrossRef] [PubMed]

4.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef] [PubMed]

5.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008). [CrossRef] [PubMed]

6.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008). [CrossRef] [PubMed]

7.

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009). [CrossRef] [PubMed]

8.

D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102(19), 193902 (2009). [CrossRef] [PubMed]

9.

I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17(18), 16209–16215 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16209. [CrossRef] [PubMed]

10.

P. Del’Haye, T. Herr, E. Gavartin, R. Holzwarth, and T. J. Kippenberg, “Octave spanning frequency comb on a chip,” arXiv:0912.4890v1 (2009), http://arxiv.org/abs/0912.4890.

11.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104(10), 103902 (2010). [CrossRef] [PubMed]

12.

Y. K. Chembo and N. Yu, “On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators,” Opt. Lett. 35(16), 2696–2698 (2010). [CrossRef] [PubMed]

13.

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010). [CrossRef]

14.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). [CrossRef] [PubMed]

15.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q optical microspheres,” Phys. Rev. A 76(4), 043837 (2007). [CrossRef]

16.

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4881. [CrossRef] [PubMed]

17.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]

18.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010). [CrossRef]

19.

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “A silicon-based monolithic optical frequency comb source,” arXiv:1102.0326v1 (2011), http://arxiv.org/abs/1102.0326.

20.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” arXiv:1103.2330v1 (2011) http://arxiv.org/abs/1103.2330.

21.

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-3853. [CrossRef] [PubMed]

22.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4357. [CrossRef] [PubMed]

23.

T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, “Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecondoscillator,” Opt. Lett. 27(20), 1842–1844 (2002). [CrossRef] [PubMed]

24.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007). [CrossRef]

25.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008). [CrossRef] [PubMed]

26.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]

27.

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005). [CrossRef] [PubMed]

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 13, 2011
Revised Manuscript: June 24, 2011
Manuscript Accepted: June 30, 2011
Published: July 11, 2011

Virtual Issues
August 4, 2011 Spotlight on Optics

Citation
Mark A. Foster, Jacob S. Levy, Onur Kuzucu, Kasturi Saha, Michal Lipson, and Alexander L. Gaeta, "Silicon-based monolithic optical frequency comb source," Opt. Express 19, 14233-14239 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14233


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002). [CrossRef] [PubMed]
  2. S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003). [CrossRef]
  3. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000). [CrossRef] [PubMed]
  4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  5. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008). [CrossRef] [PubMed]
  6. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008). [CrossRef] [PubMed]
  7. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009). [CrossRef] [PubMed]
  8. D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102(19), 193902 (2009). [CrossRef] [PubMed]
  9. I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17(18), 16209–16215 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16209 . [CrossRef] [PubMed]
  10. P. Del’Haye, T. Herr, E. Gavartin, R. Holzwarth, and T. J. Kippenberg, “Octave spanning frequency comb on a chip,” arXiv:0912.4890v1 (2009), http://arxiv.org/abs/0912.4890 .
  11. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104(10), 103902 (2010). [CrossRef] [PubMed]
  12. Y. K. Chembo and N. Yu, “On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators,” Opt. Lett. 35(16), 2696–2698 (2010). [CrossRef] [PubMed]
  13. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010). [CrossRef]
  14. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). [CrossRef] [PubMed]
  15. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q optical microspheres,” Phys. Rev. A 76(4), 043837 (2007). [CrossRef]
  16. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4881 . [CrossRef] [PubMed]
  17. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]
  18. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010). [CrossRef]
  19. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “A silicon-based monolithic optical frequency comb source,” arXiv:1102.0326v1 (2011), http://arxiv.org/abs/1102.0326 .
  20. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” arXiv:1103.2330v1 (2011) http://arxiv.org/abs/1103.2330 .
  21. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-3853 . [CrossRef] [PubMed]
  22. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4357 . [CrossRef] [PubMed]
  23. T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, “Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecondoscillator,” Opt. Lett. 27(20), 1842–1844 (2002). [CrossRef] [PubMed]
  24. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007). [CrossRef]
  25. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008). [CrossRef] [PubMed]
  26. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  27. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited