OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15525–15531
« Show journal navigation

Electrowetting driven optical switch and tunable aperture

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15525-15531 (2011)
http://dx.doi.org/10.1364/OE.19.015525


View Full Text Article

Acrobat PDF (1282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an electrowetting based optical switch with tunable aperture. Under the influence of an electric field a non-transparent oil film can be replaced locally by a transparent water drop creating an aperture through which light can pass. Its diameter can be tuned between 0.2 and 1.2 mm by varying the driving voltage or frequency. The on and off response time of the switch is in the order of 2 and 120 ms respectively. Finally we demonstrate an array of switchable apertures that can be tuned independently or simultaneously.

© 2011 OSA

1 Introduction

Optical switches and tunable optical apertures (or diaphragms) have great potential in various areas of application, such as communication, microscopy, display and lab-on-a-chip. Traditionally, such switches and apertures are controlled mechanically. However the operation of small-scale mechanical parts gives rise to complications such as increased friction and long term wear. Due to their well defined and stable interfaces along with their optical isotropy and high transmittance, liquids have been used extensively to achieve various optical phenomena (optofluidics) [1

1. R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between ... On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2007). [CrossRef]

]. Various techniques have been used to manipulate liquids such as elastic membranes [2

2. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003). [CrossRef]

], stimulus responsive hydrogels [3

3. L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006). [CrossRef] [PubMed]

], electromagnetism [4

4. B. A. Malouin Jr, M. J. Vogel, J. D. Olles, L. L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011). [CrossRef] [PubMed]

] and dielectric effects [5

5. H. W. Ren, H. Q. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008). [CrossRef] [PubMed]

7

7. H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011). [CrossRef] [PubMed]

]. Also electrowetting [8

8. F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005). [CrossRef]

14

14. N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol. 5(11), 411–413 (2009). [CrossRef]

] is an attractive method to manipulate water drops. Various optical devices have been fabricated based on electrowetting including tunable lenses [15

15. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000). [CrossRef]

], beam steering devices [9

9. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006). [CrossRef] [PubMed]

], displays [13

13. J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009). [CrossRef]

] and switchable apertures [5

5. H. W. Ren, H. Q. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008). [CrossRef] [PubMed]

7

7. H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011). [CrossRef] [PubMed]

, 16

16. J. L. Jackel, S. Hackwood, J. J. Veselka, and G. Beni, “Electrowetting Switch for Multimode Optical Fibers,” Appl. Opt. 22(11), 1765–1770 (1983). [CrossRef] [PubMed]

].

2. Optical switch/aperture configuration

A schematic of the optical switch has been presented in Fig. 1
Fig. 1 Schematic side view of the electrowetting driven optical switch and aperture.
(side view). The device consists of two substrates with a non transparent oil in between. The lower substrate consists of a glass plate coated with a conducting and transparent Indium–Tin–Oxide (ITO) layer on which an SU8 film is spin coated (4-5 µm thick). On top of this SU8 film a thin layer of Teflon AF (~20 nm thick) is deposited to make the surface more hydrophobic. The upper glass plate, 140 µm thick with a 1.2 mm diameter hole, is also coated with Teflon AF. Top and bottom substrates are separated by a 60 µm thick glass spacer and all elements are glued to each other using UV curable NVA 81 [18

18. H. Gu, M. H. G. Duits, and F. Mugele, “A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer,” Lab Chip 10(12), 1550–1556 (2010). [CrossRef] [PubMed]

]. A water reservoir is created on top of the upper glass plate by placing a rubber ring around the hole. As shown in Fig. 1 the water-oil meniscus is pinned to the upper edge of the hole in the top cover slip. This design keeps the pressure in the water phase approximately constant during the operation of the device. The oil between the top and bottom substrate is decane to which a mixture of Sudan black and red (Sigma Aldrich) is added. The device is placed on an inverted microscope to view it from below. Light traversing the water reservoir cannot pass through the oil layer since it is absorbed by the dye (Fig. 1(a)).

When a voltage is applied between the water phase and the ITO layer of the lower substrate (electrode), an electric field is generated within the oil phase. Due to the resulting electric stresses the water-oil meniscus is deflected downwards. Its shape is determined by the balance between the electric stress and the surface tension stress (or equivalently the Maxwell stress and Laplace pressure, respectively) [17

17. J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011). [CrossRef]

, 19

19. G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106, (2011). [CrossRef] [PubMed]

]. As the voltage increases, the deflection increases until it reaches a critical threshold. This threshold value depends on the aspect ratio between the radius of the hole and the height between the glass plates as well as the physical properties of the fluids [17

17. J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011). [CrossRef]

]. Once the threshold is reached, the meniscus becomes unstable and abruptly snaps down to the lower substrate (centre of the meniscus touching first as presented in Fig. 1(b)), where it creates a transparent spot (Fig. 1(b)). The dynamics of this process are governed by the balance of Maxwell stress, surface tension and viscous stresses.

The resulting optical switch can be tuned/operated by applying a DC voltage, an AC voltage or by applying amplitude modulation. In case of amplitude modulation we apply a fixed base frequency (1 kHz) and modulate the amplitude of the applied voltage at various frequencies. The amplitude modulation frequency will be addressed in this article as the applied frequency.

3. Optical switch

Figure 2
Fig. 2 Side view of the device in operation, applied voltage 50 V, base frequency 1 kHz and amplitude modulation at 0.5 Hz, dotted lines presents top and bottom surface respectively. Structures outside these lines show reflections of the actual meniscus (see also Media 1).
presents the side view of the optical switch (Media 1) in operation. To get clear images of the water-oil meniscus, in this case no Sudan black or red was added to the oil phase. The optical switch was operated by applying a base frequency of 1 kHz and modulating the amplitude at 0.5 Hz between 0 and 50 V (rms). The images shown have been selected from a movie recorded while operating the switch. Figure 2(a–c) presents the switching-on, as the amplitude of the driving voltage increases and the water meniscus bends towards the lower substrate until it snaps to it. Figure 2(d–f) presents the switching-off, as the amplitude decreases and the water meniscus retracts from the lower substrate.

To determine the optical attenuation, which is one of the key aspects of the switch, the interface was driven using a modulation frequency of 1 Hz at 50 Vrms, and images were acquired in transmission using a CCD camera with a frame rate of 250 fr/s in combination with the inverted microscope. The device was illuminated with the standard halogen lamp of the microscope using green filter (490-550 nm). Figure 3
Fig. 3 a) Bottom view of the optical switch in transmission, b) Graph presents normalized intensity and aperture diameter.
presents selected images from the recorded movie (Media 2). Figure 3(a:i) and 3(a:viii) show the “off state” whereas 3(a:ii) shows the “on state”; the other images show intermediate states. To determine the variation of the light intensity during a cycle a small area, corresponding to the smallest bright spot (Fig. 3(a:vii)), was selected. The mean intensity of this area is plotted versus time, remarkably close to 100% reduction in intensity is observed (limited by the dark noise of the camera), corresponding to a transition from the “on” to the “off” state, intensity attenuation can be improved by using Keystone liquid oil dyes as reported in [20

20. K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009). [CrossRef]

].

Along with the intensity attenuation, the response time is another key parameter defining the performance of the optical switch. To measure the response time we recorded the transmitted intensity as a function of time with a high speed camera operating at 10 kfr/s. Figure 4(a)
Fig. 4 The response time of the optical switch a) off to on state, b) on to off state.
presents the “switching-on” time, which is defined as the time it takes to increase the light intensity from 10% to 90% of the total intensity [21

21. J. T. H. Tsai, C. M. Ho, F. C. Wang, and C. T. Liang, “Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium,” Appl. Phys. Lett. 95, 251110 (2009).

]. The obtained response time going in a single step from 0 to 50 V is very short i.e. ~2 ms. In this situation the meniscus freely bends down and snaps to the lower substrate. The “switching-off” response time now going in a single step from 50 to 0 V is substantially longer i.e. ~120 ms as presented in Fig. 4(b). This difference in response times is caused by a combination of several effects. The “on-time” is particularly short because the Maxwell stress pulling on the liquid-liquid interface increases as the interface moves downward during the transition. The aspect ratio (surface spacing/hole diameter) of the current device corresponds to the regime of the electrohydrodynamic “touch-down” instability described in ref [17

17. J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011). [CrossRef]

]. The only dissipative process hindering the process is viscous dissipation primarily in the thin oil layer that is being squeezed out [22

22. A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett. 97, (2006). [CrossRef] [PubMed]

-23

23. B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng . 18(2), 025027 (2008). [CrossRef]

]. In contrast, the reverse off-switching process involves the motion of a three phase contact line, which is known to involve substantial dissipation [24

24. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009). [CrossRef]

]. Other aspects such as Young’s angle (160° in this case), contact angle hysteresis due to surface roughness as well as charge trapping [20

20. K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009). [CrossRef]

] may also play a role. Moreover, the gain in energy upon switching back is merely given by the oil-water interfacial energy times the reduction in surface area, which is much smaller than the gain in electrostatic energy upon switching on. Both response times are expected to depend also on the viscosity of the fluids used (1 mPas for water and 5 mPas for oil phase) and the interfacial tensions (water-oil 41 mN/m, water-oil + dye 5 mN/m) as reported in [6

6. H. W. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010). [CrossRef] [PubMed]

, 20

20. K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009). [CrossRef]

]. A detailed analysis of the response time, however, is beyond the scope of the present paper.

4. Optical aperture

The device can also be used as an optical aperture. Its diameter is controlled by the modulation frequency and maximum amplitude of the applied voltage. Figure 5(a)
Fig. 5 Aperture diameter D (normalized) as function of applied voltage. a) Complete cycle at 1 Hz of the optical aperture, dotted lines indicates the minimum and maximum aperture diameter. b) The calculated cycle based on energy minimization.
presents a complete cycle. As the amplitude increases (modulation at 1 Hz) the meniscus deflects towards the lower substrate. Around 42 V there is a sudden snapping of the meniscus to the lower substrate (snap-on) and the aperture diameter jumps from 0 to its maximum diameter i.e. 1.2 mm, upon further increase of the driving amplitude the diameter remains almost constant. Note that the diameter of the aperture cannot increase beyond the diameter of the hole in the top plate even if the liquid spreads further. On subsequent lowering of the amplitude the aperture diameter starts to decrease from 1.2 mm at about 42 V to ~0.2 mm at about 20 V, when the water meniscus snaps back closing the aperture (snap-off). Once the aperture has formed, by applying a voltage above 42 V, the diameter of the aperture can be tuned from minimum (~0.2 mm) to maximum (~1.2 mm) (dotted lines in the Fig. 5(a)) reversibly and without noticeable hysteresis by varying the voltage between 20 and 40 V.

According to a theoretical analysis by Oh et al. [17

17. J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011). [CrossRef]

], the threshold voltage for snapping of the meniscus to the lower substrate is for our configuration about 47 V (Fig. 5(b)). This agrees well with the observed transition at 42 V. The voltage dependence of the radius of the aperture is also obtained from an energy minimization, taking into account the Laplace and Maxwell pressure as well as the surface energy of the water-substrate contact area. The Maxwell pressure at the contact area can be approximated as [17

17. J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011). [CrossRef]

]
πe=ε0εrEn22ε0εr2(Vd)2
(1)
where d is the thickness of the dielectric SU8/Teflon layer on the lower substrate. Comparing the variation of the surface energy due to this Maxwell pressure with that of the interfacial energy of both the oil-water and water-substrate interface, with varying radius of the aperture, one can estimate this radius for a given voltage as well as the minimum voltage for maintaining an aperture, which is around 16 V. We observe a minimum voltage of 20 V; see both red lines in Fig. 5. This deviation is primarily due to the approximation of the water-oil interface by a parabolic shape. Comparing both red lines in Fig. 5 one can observe that also the voltage dependence of the aperture size is qualitatively described by the model calculation. A more detailed analysis is possible using the method of energy minimization as done in [25

25. J. C. Baret and M. Brinkmann, “Wettability control of droplet deposition and detachment,” Phys. Rev. Lett. 96, - (2006). [CrossRef] [PubMed]

].

Finally, it is worthwhile to note another unique aspect of the present design: Traditionally small optical apertures suffer from diffraction along to their sharp edges. For the present aperture the transmitted intensity decreases continuously from its maximum value in the center to zero over a range that is determined by the absorption of the dye and the geometrically determined shape of the oil-water interface (see Fig. 1). Figure 7
Fig. 7 Intensity profiles across the aperture diameter (solid line), black to dark blue intensity profiles presents the snapshot presented in Fig. 3(a:ii-vii), Gaussian fit (square symbols).
shows examples for a few different aperture diameters without any indication of diffraction. It is also interesting to note that the present design can produce beam with a Gaussian intensity profile from a flat initial profile. We plan to explore these aspects in miniaturized versions of these apertures in future research.

5. An array of optical switches and apertures

The optical switch with tunable aperture as presented here has great potential in optical communication, display and in lab-on-chip devices, because they can be arranged in an array of individually addressable apertures. Here we demonstrate this potential by presenting a device consisting of two optical switches/apertures, positioned close to each other, that can be addressed independently without any cross talk, see Fig. 8
Fig. 8 a) Two optical switches, positioned close together, can be addressed independently.
. In Fig. 8(a-c) the right switch is addressed (50 V, 1 Hz). The left switch is addressed in the same way in Fig. 8(d-e). Finally, voltage is applied to both switches/apertures Fig. 8(f) presents the on state of two switches simultaneously.

6. Conclusions

We presented an electrowetting based optical switch with tunable aperture. By switching we can achieve close to 100% intensity attenuation. The response time for switching on and off is ~2 and ~120 ms respectively. The response time can be improved by lowering the viscosity of the fluids used and by optimizing the device geometry (hole diameter and aspect ratio). The aperture of the device can be tuned by varying the applied voltage and/or frequency. Moreover the aperture presented here can be used to create a diffraction free spot due to its smooth edges. Eventually, this switching mechanism can be used to create arrays of optical switches with tunable aperture which might be useful in microscopy, optical communications, displays and Lab-on-chip.

Acknowledgements

We thank G. Manukyan for stimulating discussions along with unknown reviewer who stimulated discussion about the possibility of creating diffraction free spot by an aperture presented in this article, due to its smooth edges. This work was supported by research institutes MESA + and IMPACT.

References and Links

1.

R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between ... On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2007). [CrossRef]

2.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003). [CrossRef]

3.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006). [CrossRef] [PubMed]

4.

B. A. Malouin Jr, M. J. Vogel, J. D. Olles, L. L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011). [CrossRef] [PubMed]

5.

H. W. Ren, H. Q. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008). [CrossRef] [PubMed]

6.

H. W. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010). [CrossRef] [PubMed]

7.

H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011). [CrossRef] [PubMed]

8.

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005). [CrossRef]

9.

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006). [CrossRef] [PubMed]

10.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003). [CrossRef] [PubMed]

11.

T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, and L. J. M. Schlangen, “Liquid behavior inside a reflective display pixel based on electrowetting,” J. Appl. Phys. 95(8), 4389–4396 (2004). [CrossRef]

12.

J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86, - (2005).

13.

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009). [CrossRef]

14.

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol. 5(11), 411–413 (2009). [CrossRef]

15.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000). [CrossRef]

16.

J. L. Jackel, S. Hackwood, J. J. Veselka, and G. Beni, “Electrowetting Switch for Multimode Optical Fibers,” Appl. Opt. 22(11), 1765–1770 (1983). [CrossRef] [PubMed]

17.

J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011). [CrossRef]

18.

H. Gu, M. H. G. Duits, and F. Mugele, “A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer,” Lab Chip 10(12), 1550–1556 (2010). [CrossRef] [PubMed]

19.

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106, (2011). [CrossRef] [PubMed]

20.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009). [CrossRef]

21.

J. T. H. Tsai, C. M. Ho, F. C. Wang, and C. T. Liang, “Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium,” Appl. Phys. Lett. 95, 251110 (2009).

22.

A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett. 97, (2006). [CrossRef] [PubMed]

23.

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng . 18(2), 025027 (2008). [CrossRef]

24.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009). [CrossRef]

25.

J. C. Baret and M. Brinkmann, “Wettability control of droplet deposition and detachment,” Phys. Rev. Lett. 96, - (2006). [CrossRef] [PubMed]

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(230.2090) Optical devices : Electro-optical devices
(130.4815) Integrated optics : Optical switching devices
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Devices

History
Original Manuscript: May 31, 2011
Revised Manuscript: July 6, 2011
Manuscript Accepted: July 19, 2011
Published: July 28, 2011

Citation
C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, "Electrowetting driven optical switch and tunable aperture," Opt. Express 19, 15525-15531 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15525


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Shamai, D. Andelman, B. Berge, and R. Hayes, “Water, electricity, and between ... On electrowetting and its applications,” Soft Matter 4(1), 38–45 (2007). [CrossRef]
  2. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003). [CrossRef]
  3. L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006). [CrossRef] [PubMed]
  4. B. A. Malouin, M. J. Vogel, J. D. Olles, L. L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011). [CrossRef] [PubMed]
  5. H. W. Ren, H. Q. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008). [CrossRef] [PubMed]
  6. H. W. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010). [CrossRef] [PubMed]
  7. H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011). [CrossRef] [PubMed]
  8. F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005). [CrossRef]
  9. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006). [CrossRef] [PubMed]
  10. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003). [CrossRef] [PubMed]
  11. T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, and L. J. M. Schlangen, “Liquid behavior inside a reflective display pixel based on electrowetting,” J. Appl. Phys. 95(8), 4389–4396 (2004). [CrossRef]
  12. J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86, - (2005).
  13. J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009). [CrossRef]
  14. N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol. 5(11), 411–413 (2009). [CrossRef]
  15. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000). [CrossRef]
  16. J. L. Jackel, S. Hackwood, J. J. Veselka, and G. Beni, “Electrowetting Switch for Multimode Optical Fibers,” Appl. Opt. 22(11), 1765–1770 (1983). [CrossRef] [PubMed]
  17. J. M. Oh, G. Manukyan, D. Ende, and F. Mugele, “Electric-field–driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011). [CrossRef]
  18. H. Gu, M. H. G. Duits, and F. Mugele, “A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer,” Lab Chip 10(12), 1550–1556 (2010). [CrossRef] [PubMed]
  19. G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106, (2011). [CrossRef] [PubMed]
  20. K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009). [CrossRef]
  21. J. T. H. Tsai, C. M. Ho, F. C. Wang, and C. T. Liang, “Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium,” Appl. Phys. Lett. 95, 251110 (2009).
  22. A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett. 97, (2006). [CrossRef] [PubMed]
  23. B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng . 18(2), 025027 (2008). [CrossRef]
  24. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009). [CrossRef]
  25. J. C. Baret and M. Brinkmann, “Wettability control of droplet deposition and detachment,” Phys. Rev. Lett. 96, - (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1121 KB)     
» Media 2: AVI (3350 KB)     
» Media 3: AVI (307 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited