OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15549–15559
« Show journal navigation

Parametric tunable dispersion compensation for the transmission of sub-picosecond pulses

Takayuki Kurosu, Ken Tanizawa, Stephane Petit, and Shu Namiki  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15549-15559 (2011)
http://dx.doi.org/10.1364/OE.19.015549


View Full Text Article

Acrobat PDF (1135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Parametric tunable dispersion compensator (P-TDC), which allows format-independent operation owing to seamlessly wide bandwidth, is expected to be one of the key building blocks of the future ultra-high speed optical network. In this paper, a design of ultra-wide band P-TDC is presented showing that bandwidth over 2.5 THz can be achieved by compensating the chromatic dispersion up to the 4th order without employing additional method. In order to demonstrate the potential application of P-TDC in the Tbit/s optical time division multiplexing transmissions, 400 fs optical pulses were successfully transmitted through a dispersion managed 6-km DSF fiber span.

© 2011 OSA

1. Introduction

Among the tunable CD compensators, parametric tunable dispersion compensator (P-TDC), which comprises a phase preserving frequency converter together with frequency dependent dispersive media, is particularly attractive because it is free from the tradeoff between the amount of dispersion and the bandwidth, and allows fast dispersion tuning on the order of μs [5

5. S. Namiki, “Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers,” J. Lightwave Technol. 26(1), 28–35 (2008). [CrossRef]

,6

6. K. Tanizawa, J. Kurumida, H. Ishida, Y. Oikawa, N. Shiga, M. Takahashi, T. Yagi, and S. Namiki, “Microsecond switching of parametric tunable dispersion compensator,” Opt. Lett. 35(18), 3039–3041 (2010). [CrossRef] [PubMed]

]. In principle, P-TDC can compensate for FOD as well as second order dispersion (SOD) and third order dispersion (TOD) without using additional device. This suggests the usefulness of P-TDC in the Tbit/s OTDM transmissions or in the chirp control of femtosecond laser pulses including the use in the chirped pulse amplification (CPA) [7

7. R. E. Kennedy and J. R. Taylor, “All-fiber integrated chirped pulse amplification at 1.06μm using aircore photonic bandgap fiber,” Appl. Phys. Lett. 87(16), 161106 (2005). [CrossRef]

]. We have, so far, verified wide bandwidth of P-TDC over 1 THz in the experiment using 2.7 ps optical pulses [5

5. S. Namiki, “Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers,” J. Lightwave Technol. 26(1), 28–35 (2008). [CrossRef]

]. The usefulness of P-TDC was also demonstrated for OTDM transmissions at 172 Gbit/s [8

8. K. Tanizawa, T. Kurosu, and S. Namiki, “High-speed optical transmissions over a second- and third-order dispersion-managed DSF span with parametric tunable dispersion compensator,” Opt. Express 18(10), 10594–10603 (2010). [CrossRef] [PubMed]

]. The principle of P-TDC was later expanded to the idea of simultaneous control of delay and dispersion [9

9. T. Kurosu and S. Namiki, “Continuously tunable 22 ns delay for wideband optical signals using a parametric delay-dispersion tuner,” Opt. Lett. 34(9), 1441–1443 (2009). [CrossRef] [PubMed]

], by which microsecond optical delays were achieved with the record delay-bandwidth products [10

10. N. Alic, E. Myslivets, S. Moro, B. P.-P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “Microsecond parametric optical delays,” J. Lightwave Technol. 28(4), 448–455 (2010). [CrossRef]

,11

11. S. R. Nuccio, O. F. Yilmaz, X. Wang, H. Huang, J. Wang, X. Wu, and A. E. Willner, “Higher-order dispersion compensation to enable a 3.6 micros wavelength-maintaining delay of a 100 Gb/s DQPSK signal,” Opt. Lett. 35(17), 2985–2987 (2010). [CrossRef] [PubMed]

]. While wide bandwidth of P-TDC has been well recognized, it has never been applied to femtosecond pulses.

In this paper, we present the performance of P-TDC applied to sub-picosecond pulses. First, we the present basic design issue of ultra-wideband P-TDC with the perfect compensation of FOD. Then, we present transmission characteristics of 400-fs optical pulses through a 6-km dispersion shifted fiber (DSF), concatenated with a P-TDC in nearly optimum configuration.

2. The Impact of Higher Order Dispersion on the Pulse Propagation

In general, DSF is more suitable than SMF for the transmission of optical pulses in the sense that its dispersion is close to zero at 1.5 μm. However, higher order dispersion of DSF still limits the transmission of sub-picosecond pulses. Figure 1
Fig. 1 The output waveform of sub-picosecond Gaussian pulses after transmission through a DSF with or without CD compensation. τ in: Input pulse width. (a) 100-m DSF without CD compensation, (b) 100-m DSF with SOD compensation, (c) 6-km DSF with compensation of SOD and TOD.
shows the output waveforms when a sub-picosecond pulse propagates through a DSF with or without CD compensation. The calculation was made for Gaussian pulses with different pulse widths of 100 fs, 200 fs and 400 fs. The center wavelength of the input pulse and the zero-dispersion wavelength of DSF are 1535 nm and 1546 nm, respectively. Figure 1(a) shows the output waveforms from a 100-m DSF for which no CD compensation is performed. Figure 1(b) shows the waveforms from a 100-m DSF for which only SOD is compensated. It is seen that TOD of a 100-m DSF seriously distorts the pulse shape. Figure 1(c) shows the waveforms after transmitting through a 6-km DSF for which both SOD and TOD are compensated. It is seen that pulses narrower than 200 fs are stretched symmetrically and entail pedestals by FOD.

P-TDC enables dispersion compensation up to 4th order without employing additional device such as phase modulator, while facilitating a tunability of SOD. Since compensation of TOD and FOD relies on the careful arrangement of optical fibers, optimum performance of P-TDC is obtained at the designed input wavelength. When the dispersion of an optical fiber is compensated up to 4th order, zero dispersion is obtained in a range over ~30 nm. There is a tolerance of this range for the varying input wavelength, although the tuning range decreases with the offset from the designed wavelength. For example, a tolerance of ± 5 nm exists for 400 fs pulse.

3.Theory

The details of the principle of P-TDC are described in [5

5. S. Namiki, “Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers,” J. Lightwave Technol. 26(1), 28–35 (2008). [CrossRef]

]. In P-TDC, signal passes two dispersive mediums with a moderate dispersion slope and phase preserving frequency conversion takes place in between them. The wideband frequency conversion, which is accompanied by spectral inversion (type-1) or non-inversion (type-2), is, for example, performed through four-wave mixing (FWM) process in a highly nonlinear fiber (HNLF) [12

12. M. Takahashi, K. Mukasa, and T. Yagi, “Full C-L band tunable wavelength conversion by zero dispersion and zero dispersion slope HNLF,” in 35th European Conference and Exhibition on Optical Communication (ECOC2009), Technical Digest (CD), paper P1.08 (2009).

]. In the design of ultra-wide band P-TDC, the type-1 scheme provides more flexibility than the type-2 scheme owing to the effect of spectral inversion (SI). Therefore, we focus our attention on the type-1 scheme, whose configuration and operating principle are shown in Fig. 1. To make the argument simple, the transmission line whose dispersion is to be compensated is included as a part of the first dispersive medium in Fig. 2
Fig. 2 The configuration and operating principle of P-TDC. FC/SI: Frequency converter with spectral inversion.
. In this scheme, CD compensation is achieved by controlling the signal frequency in the second dispersive medium so that the effective dispersion of the system is maintained to zero.

If we define normalized amplitude u(z, t) and ignore nonlinear effects, pulse propagation through a dispersive medium is described by [13

13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

]
izu(z,t)=kikβkk!ktku(z,t),
(1)
where β k is k-th order dispersion. If the input pulse shape u in(t) is given, the solution of Eq. (1) is given by the Fourier inverse transform as
u(z=L,t)=12πu˜(ω)exp[iφ(ω)]exp(iωt)dω,
(2)
where L is the length of the medium, u˜(ω) is the Fourier transform of uin (t) and
φ(ω)=k=0βkLωkk!.
(3)
We note that ω is the frequency offset from the central frequency of the pulse. Using this solution successively and applying a transformation ω → -ω for the first dispersive medium, the pulse shape after transmitting the system shown in Fig. 1, uout (t), is given as
uout(t)=12πu˜(ω)exp[iφ  T(ω)]exp(iωt)dω,
(4)
where φ  T(ω)is given by
φ  T(ω)=k=0[βk(2)L2ωkβk(1)L1(ω)k]k!.
(5)
Here, Li is the length of the i-th dispersive medium andβk(i) is the k-th order dispersion defined around the signal frequency in the i-th dispersive medium. In the case when the system includes optical components that modify signal spectrum, their effect can be included using their transfer function H(ω) and the output pulse shape is given by
uout(t)=12πu˜(ω)H(±ω)exp[iφT(ω)]exp(iωt)dω,
(6)
where plus and minus sign of H(±ω) applies for the optical components in the second and first dispersive medium, respectively.

From Eq. (5), the effective dispersion of the system is obtained as
deff(ω)=d2dω2φT(ω)=k=0[βk+2(2)L2+(1)k+1βk+2(1)L1]ωkk!,
(7)
Equation (7) shows that the dispersion of even orders are cancelled. The illustration in Fig. 1 shows the ideal case, where the two dispersive media have symmetric dispersion profiles with respect to the conversion frequency. In this case, the effective dispersion vanishes completely, because βk(2)L1=(1)kβk(1)L2 holds for all k.

4. Design Concept for Ultra-Wide Band P-TDC

Here, we present the basic concept for designing ultra-wide band P-TDC and apply it to a DSF of 6 km for the transmission of sub-picosecond pulses. DSF was chosen as the transmission line, because CD compensation of DSF is not feasible compared to other fibers due to large relative dispersion slope (RDS) [5

5. S. Namiki, “Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers,” J. Lightwave Technol. 26(1), 28–35 (2008). [CrossRef]

]. As the dispersive media, we can use several kinds of fibers that are commonly used in the optical telecommunication. Figure 3(a)
Fig. 3 (a) Typical dispersion profile of SMF, DSF and DCF. (b) Quadratic dispersion profile obtained from a combination of “1-km SMF and 153-m DCF”. (c) Linear dispersion profile obtained from a combination of “1-km DSF, 500-m SMF and 75-m DCF”.
shows the typical dispersion profiles of the SMF, DSF and DCF together with measured dispersion properties. Since DCF is designed to compensate for SOD and TOD of an SMF simultaneously, by adding a proper length of DCF to an SMF, we can obtain a quadratic dispersion profile where FOD is dominant with a total suppression of SOD and TOD. Such a fiber pair is available to compensate for the FOD of a DSF. As the example of such special combination of optical fibers, Fig. 3(b) and 3(c) show a quadratic dispersion profile, which is obtained from a combination of “1-km SMF and 153-m DCF” and a linear dispersion profile, which is obtained from a combination of “1-km DSF, 500-m SMF and 75-m DCF”, respectively. In principle, by properly arranging SMF, DSF and DCF, we can freely tailor dispersion profile of a system up to the 4th order.

P-TDC with maximum bandwidth is obtained by arranging optical fibers so that the effective dispersion given by Eq. (7) becomes zero up to the 4th order. This is possible owing to the negative sign of the second term. If this sign was positive, effective FOD could not be zero, because the sign of β4 is same for all the fibers. This design concept is true for the compensation scheme by MSSI [4

4. B. P.-P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C. Bres, S. Moro, F. Gholami, A. Peric, N. Alic, and S. Radic, “Transmission of 640-Gb/s RZ-OOK channel over 100km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol. 29(4), 516–523 (2011). [CrossRef]

], whose principle is similar to P-TDC and can be explained using the same diagram in Fig. 1. In the wavelength transparent MSSI, signal wavelength and dispersion property are same in the two dispersive media and effective dispersion becomes zero if βk(1,2) is zero for odd number of k. Therefore, CD compensation up to the 4th order can be achieved simply by compensating the dispersion slope, although dispersion tunability is not obtained in this scheme.

Figure 4
Fig. 4 The optimum configuration of P-TDC designed for 6-km DSF span.
presents the example of P-TDC designed for a 6-km DSF using three kinds of optical fibers whose characteristics are shown in Fig. 3(a). The 6-km DSF together with a 3.6-km SMF and a 980-m DCF comprises the first dispersive medium and a 430-m DCF comprises the second dispersive medium. The frequency conversion with SI can be performed by a degenerate FWM. Figure 5(a)
Fig. 5 (a) Effective dispersion calculated for several converted wavelengths (input signal: 1535 nm) and the dispersion of DSF. (b) Output pulse width estimated for Gaussian pulses with a width of 100 fs (blue) and 400 fs (red).
shows the effective dispersion profile calculated for several converted wavelengths when the input signal is centered at 1535 nm together with the dispersion profile of 6-km DSF. At the converted wavelength of 1554.6 nm, zero dispersion is obtained in a frequency range over 2.5 THz owing to the dispersion compensation up to the 4th order. It is seen from Fig. 5(a) that effective TOD deviates from zero as the converted wavelength departs from 1554.6 nm. However, the amount of deviation is very small compared to the dispersion slope of DSF and has negligible effect on the performance of P-TDC. Figure 5(b) shows the variation of output pulse width calculated for Gaussian pulses with a width of 100 fs and 400 fs. It is shown that input pulse width is restored at the converted wavelength of 1554.6 nm for both input pulse widths.

We verified the performance of this P-TDC theoretically by simulating the transmission of 100 fs pulses. Figure 6
Fig. 6 Waveforms of 100-fs Gaussian pulse after transmission of 6-km-DSF with optimally arranged P-TDC (solid curve) and CD compensation up to the 3rd order (dashed curve).
shows the output waveform obtained at the converted wavelength of 1554.6 nm. For comparison, waveform that is obtained when the dispersion compensation is performed only up to the 3rd order is also shown in the figure. It is confirmed that optimally designed P-TDC enables transmission of 100 fs pulses through a 6-km DSF, whereas dispersion compensation up to the 3rd order is not sufficient.

5. Experiment and Results

A pulse train with a repetition rate of 43 GHz and central wavelength of 1535 nm was generated from a fiber based pulse source, which consisted of an intensity-modulated CW laser and a comb-like profile fiber compressor [14

14. T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, “Optical pulse compression based on stationary rescaled pulse propagation in a comblike profiled fiber,” J. Lightwave Technol. 24(7), 2510–2522 (2006). [CrossRef]

]. The output power of the pulse source was attenuated to −6 dBm and launched into the 6-km DSF. The input pulse shape had sech2 profile with a width (FWHM) of 400 fs. Figure 9(a)
Fig. 9 The auto-correlation trace (a) and spectra of the input pulse (b). The curve in fig. (b) is a theoretical fit to the data.
and 9(b) show the auto-correlation trace and the spectrum of the input pulse, respectively. The observed spectrum, which was fitted well by a sech2 profile with a width (FWHM) of 6.7 nm, was used as u˜(ω) in the calculation of output pulse shape. In the frequency converter (FC), the signal was amplified to 13 dBm by a gain-flattened EDFA, which is followed by a band-pass filter (BPF) with 16 nm bandwidth for ASE rejection, and mixed with a pump laser of 20 dBm through a 3 dB coupler for the degenerate FWM in a HNLF. The HNLF was 100 m long and had a uniform conversion efficiency of −19 dB for the converted wavelength of 1545 nm ~1565 nm. After the HNLF, the converted signal was selected using another BPF with 16 nm bandwidth. Polarization controllers (PC) were used to adjust the polarization of the signal through the fiber. The output pulse was amplified to 6 dBm for the pulse width measurement using an auto-correlator (AC). When the signal power after FC was too small, the AC trace did not reflect the pulse shape correctly and measurement became inaccurate. To avoid this, signal power was amplified to 13 dBm before FWM in FC. There was a small deviation of the output pulse shape from sech2 profile. However, we estimated the pulse width from the AC trace assuming a sech2 profile in order to keep consistency with the measurement for the input pulse.

Figure 10
Fig. 10 Output pulse width measured for various conversed wavelength. Two curves show the theoretical estimations made with (bold) or without (dash) including the effect of EDFA and bandpass filter. Inset shows the AC traces for input and restored pulse.
shows the output pulse width measured for several converted wavelength together with theoretical values. The minimum pulse width of 480 fs was obtained at the converted wavelength of 1555.3 nm.

6. Discussions

The experiment showed that the pulse after compensation was slightly broader than the input pulse. The slight broadening could be caused by the effects that appear in the optical fiber such as polarization mode dispersion (PMD) or self phase modulation (SPM). These possibilities were, however, excluded by the following observations. When we varied the power or the polarization of the signal, only very small change was observed in the restored pulse width. In another measurement performed using a similar setup, where the length of DSF and DCF was reduced by a factor of twelve, almost same width was obtained for the restored pulse. These observations imply that the slight pulse broadening was caused by FC rather than the effects in the optical fiber.

We found that limited bandwidth of the BPF and the EDFA which are used in the FC could slightly broaden the restored pulse. The BPFs, which had a flat-top profile with sharp edge, rejected small portion of the signal spectrum lying outside its 16 nm pass band. The non-uniform gain profile of the EDFA also slightly reduced the width of signal spectrum. In the theory, those spectral shaping effects were included by putting H(ω)=F(ω)G(ω) in Eq. (6), where F(ω) and G(ω) are the transfer function of the filter and the EDFA, respectively. For the filter, we assumed a rectangular window given by
F(ω)=     1   (|ω|Bfilter/2)                     0   (|ω|>Bfilter/2),
(8)
where B filter( = 2π × 2 THz) represents the bandwidth of the BPF. For the EDFA, we assumed a Gaussian profile given by
G(ω)=exp[(ω2/2BEDFA2)],
(9)
where B EDFA = 2π × 4 THz was chosen to account for the measured gain variation of about 1dB in the C-band. Figure 10 shows two theoretical curves calculated with or without including the effect of the BPF and the EDFA. As it can be seen, measured pulse widths agree well with the theoretical estimation obtained with the effects of the BPF and the EDFA.

Finally, we note that P-TDC is not wavelength maintaining. However, by cascading another frequency converter, P-TDC can be wavelength tunable and produce same wavelength as the input signal if necessary.

7. Conclusion

We presented a theory for P-TDC and showed that CD compensation up to the 4th order is possible by properly arranging SMF, DSF and DCF. In the experiment, we successfully transmitted 400fs optical pulses through a dispersion managed 6km-DSF with tunning characteristics in good agreement with the theoretical estimation. Due to insufficient bandwidth of FC, restored pulse was broadened to 480 fs, which is still sufficient for 1.28 Tbit-OTDM transmission. The pulse broadening can be eliminated by proper selection of optical components. The results confirm the usefulness of P-TDC in the future ultra-high speed OTDM transmission or in the chirp control of femtosecond pulses.

Acknowledgments

Part of this work was supported by Special Coordination Funds for Promoting Science and Technology of MEXT.

References and links

1.

S. Vorbeck and R. Leppla, “Dispersion and dispersion slope tolerance of 160-Gb/s systems, considering the temperature dependence of chromatic dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003). [CrossRef]

2.

S. Arahira, S. Kutsuzawa, Y. Matsui, and Y. Ogawa, “Higher order chirp compensation of femtosecond mode-locked semiconductor lasers using optical fibers with different group-velocity dispersions,” IEEE J. Sel. Top. Quantum Electron. 2(3), 480–486 (1996). [CrossRef]

3.

T. Yamamoto and M. Nakazawa, “Third- and fourth-order active dispersion compensation with a phase modulator in a terabit-per-second optical time-division multiplexed transmission,” Opt. Lett. 26(9), 647–649 (2001). [CrossRef] [PubMed]

4.

B. P.-P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C. Bres, S. Moro, F. Gholami, A. Peric, N. Alic, and S. Radic, “Transmission of 640-Gb/s RZ-OOK channel over 100km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol. 29(4), 516–523 (2011). [CrossRef]

5.

S. Namiki, “Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers,” J. Lightwave Technol. 26(1), 28–35 (2008). [CrossRef]

6.

K. Tanizawa, J. Kurumida, H. Ishida, Y. Oikawa, N. Shiga, M. Takahashi, T. Yagi, and S. Namiki, “Microsecond switching of parametric tunable dispersion compensator,” Opt. Lett. 35(18), 3039–3041 (2010). [CrossRef] [PubMed]

7.

R. E. Kennedy and J. R. Taylor, “All-fiber integrated chirped pulse amplification at 1.06μm using aircore photonic bandgap fiber,” Appl. Phys. Lett. 87(16), 161106 (2005). [CrossRef]

8.

K. Tanizawa, T. Kurosu, and S. Namiki, “High-speed optical transmissions over a second- and third-order dispersion-managed DSF span with parametric tunable dispersion compensator,” Opt. Express 18(10), 10594–10603 (2010). [CrossRef] [PubMed]

9.

T. Kurosu and S. Namiki, “Continuously tunable 22 ns delay for wideband optical signals using a parametric delay-dispersion tuner,” Opt. Lett. 34(9), 1441–1443 (2009). [CrossRef] [PubMed]

10.

N. Alic, E. Myslivets, S. Moro, B. P.-P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “Microsecond parametric optical delays,” J. Lightwave Technol. 28(4), 448–455 (2010). [CrossRef]

11.

S. R. Nuccio, O. F. Yilmaz, X. Wang, H. Huang, J. Wang, X. Wu, and A. E. Willner, “Higher-order dispersion compensation to enable a 3.6 micros wavelength-maintaining delay of a 100 Gb/s DQPSK signal,” Opt. Lett. 35(17), 2985–2987 (2010). [CrossRef] [PubMed]

12.

M. Takahashi, K. Mukasa, and T. Yagi, “Full C-L band tunable wavelength conversion by zero dispersion and zero dispersion slope HNLF,” in 35th European Conference and Exhibition on Optical Communication (ECOC2009), Technical Digest (CD), paper P1.08 (2009).

13.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

14.

T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, “Optical pulse compression based on stationary rescaled pulse propagation in a comblike profiled fiber,” J. Lightwave Technol. 24(7), 2510–2522 (2006). [CrossRef]

15.

T. Kurosu, K. Tanizawa, S. Petit, and S. Namiki, “Parametric tunable dispersion compensation for sub-picosecond optical pulses,” in CLEO2011, Proceedings CMJ7 (2011).

16.

S. Petit, T. Kurosu, M. Takahashi, T. Yagi, and S. Namiki, “Low penalty uniformly tunable wavelength conversion without spectral inversion over 30 nm using SBS-suppressed low dispersion slope highly nonlinear fibers,” IEEE Photon. Technol. Lett. 23(9), 546–548 (2011). [CrossRef]

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 3, 2011
Revised Manuscript: July 15, 2011
Manuscript Accepted: July 15, 2011
Published: July 28, 2011

Citation
Takayuki Kurosu, Ken Tanizawa, Stephane Petit, and Shu Namiki, "Parametric tunable dispersion compensation for the transmission of sub-picosecond pulses," Opt. Express 19, 15549-15559 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15549


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Vorbeck and R. Leppla, “Dispersion and dispersion slope tolerance of 160-Gb/s systems, considering the temperature dependence of chromatic dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003). [CrossRef]
  2. S. Arahira, S. Kutsuzawa, Y. Matsui, and Y. Ogawa, “Higher order chirp compensation of femtosecond mode-locked semiconductor lasers using optical fibers with different group-velocity dispersions,” IEEE J. Sel. Top. Quantum Electron. 2(3), 480–486 (1996). [CrossRef]
  3. T. Yamamoto and M. Nakazawa, “Third- and fourth-order active dispersion compensation with a phase modulator in a terabit-per-second optical time-division multiplexed transmission,” Opt. Lett. 26(9), 647–649 (2001). [CrossRef] [PubMed]
  4. B. P.-P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C. Bres, S. Moro, F. Gholami, A. Peric, N. Alic, and S. Radic, “Transmission of 640-Gb/s RZ-OOK channel over 100km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol. 29(4), 516–523 (2011). [CrossRef]
  5. S. Namiki, “Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers,” J. Lightwave Technol. 26(1), 28–35 (2008). [CrossRef]
  6. K. Tanizawa, J. Kurumida, H. Ishida, Y. Oikawa, N. Shiga, M. Takahashi, T. Yagi, and S. Namiki, “Microsecond switching of parametric tunable dispersion compensator,” Opt. Lett. 35(18), 3039–3041 (2010). [CrossRef] [PubMed]
  7. R. E. Kennedy and J. R. Taylor, “All-fiber integrated chirped pulse amplification at 1.06μm using aircore photonic bandgap fiber,” Appl. Phys. Lett. 87(16), 161106 (2005). [CrossRef]
  8. K. Tanizawa, T. Kurosu, and S. Namiki, “High-speed optical transmissions over a second- and third-order dispersion-managed DSF span with parametric tunable dispersion compensator,” Opt. Express 18(10), 10594–10603 (2010). [CrossRef] [PubMed]
  9. T. Kurosu and S. Namiki, “Continuously tunable 22 ns delay for wideband optical signals using a parametric delay-dispersion tuner,” Opt. Lett. 34(9), 1441–1443 (2009). [CrossRef] [PubMed]
  10. N. Alic, E. Myslivets, S. Moro, B. P.-P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “Microsecond parametric optical delays,” J. Lightwave Technol. 28(4), 448–455 (2010). [CrossRef]
  11. S. R. Nuccio, O. F. Yilmaz, X. Wang, H. Huang, J. Wang, X. Wu, and A. E. Willner, “Higher-order dispersion compensation to enable a 3.6 micros wavelength-maintaining delay of a 100 Gb/s DQPSK signal,” Opt. Lett. 35(17), 2985–2987 (2010). [CrossRef] [PubMed]
  12. M. Takahashi, K. Mukasa, and T. Yagi, “Full C-L band tunable wavelength conversion by zero dispersion and zero dispersion slope HNLF,” in 35th European Conference and Exhibition on Optical Communication (ECOC2009), Technical Digest (CD), paper P1.08 (2009).
  13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  14. T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, “Optical pulse compression based on stationary rescaled pulse propagation in a comblike profiled fiber,” J. Lightwave Technol. 24(7), 2510–2522 (2006). [CrossRef]
  15. T. Kurosu, K. Tanizawa, S. Petit, and S. Namiki, “Parametric tunable dispersion compensation for sub-picosecond optical pulses,” in CLEO2011, Proceedings CMJ7 (2011).
  16. S. Petit, T. Kurosu, M. Takahashi, T. Yagi, and S. Namiki, “Low penalty uniformly tunable wavelength conversion without spectral inversion over 30 nm using SBS-suppressed low dispersion slope highly nonlinear fibers,” IEEE Photon. Technol. Lett. 23(9), 546–548 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited