OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15690–15695
« Show journal navigation

14 GHz visible supercontinuum generation: calibration sources for astronomical spectrographs

S. P. Stark, T. Steinmetz, R. A. Probst, H. Hundertmark, T. Wilken, T. W. Hänsch, Th. Udem, P. St. J. Russell, and R. Holzwarth  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 15690-15695 (2011)
http://dx.doi.org/10.1364/OE.19.015690


View Full Text Article

Acrobat PDF (1297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the use of a specially designed tapered photonic crystal fiber to produce a broadband optical spectrum covering the visible spectral range. The pump source is a frequency doubled Yb fiber laser operating at a repetition rate of 14 GHz and emitting sub-5 pJ pulses. We experimentally determine the optimum core diameter and achieve a 235 nm broad spectrum. Numerical simulations are used to identify the underlying mechanisms and explain spectral features. The high repetition rate makes this system a promising candidate for precision calibration of astronomical spectrographs.

© 2011 OSA

1. Introduction

Offering long path lengths, extremely low transmission losses and a well-defined guided mode, single-mode optical fibers have proven to be a convenient test-bed for nonlinear optics. The advent of photonic crystal fibers (PCFs) has extended the range of possibilities by offering smaller mode areas and greatly extended control of group velocity dispersion (GVD) [1

1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]

]. The ability to shift the zero-dispersion wavelength (ZDW) to match that of common near-infrared laser systems has led to the efficient generation of bright octave-spanning sources [2

2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]

4

4. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St J Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004). [CrossRef] [PubMed]

], with applications in, e.g., biology [5

5. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008). [CrossRef] [PubMed]

] and frequency metrology [6

6. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000). [CrossRef] [PubMed]

]. The ability to precisely adjust the GVD over a broad wavelength range has enabled the development of efficient photon-pair sources using four-wave mixing [7

7. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005). [CrossRef] [PubMed]

] and studies of pulse breakup and soliton formation in regions of anomalous dispersion, involving effects such as the soliton self-frequency shift and dispersive wave generation [8

8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

].

In this work we use tapered PCFs to broaden the spectrum of a high repetition rate laser frequency comb (LFC). Our motivation is to extend the potential of the frequency comb as a wavelength calibrator for applications in astro-metrology.

The precise redshift measurement of an astronomical object requires accurate monitoring of a large set of absorption lines distributed over a wide range of its spectrum. For example, the discovery of extra-solar planets is largely based upon the measurement of small variations in the Doppler shift of stellar absorption lines [9

9. M. Mayor and D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature 378(6555), 355–359 (1995). [CrossRef]

, 10

10. L. Billings, “Astronomy: exoplanets on the cheap,” Nature 470(7332), 27–29 (2011). [CrossRef] [PubMed]

]. The detection of an earth-like planet would require new calibration sources outperforming current thorium-argon calibration lamps and iodine absorption cells [10

10. L. Billings, “Astronomy: exoplanets on the cheap,” Nature 470(7332), 27–29 (2011). [CrossRef] [PubMed]

, 11

11. C. Lovis and F. Pepe, “A new list of thorium and argon spectral lines in the visible,” A&A. 468(3), 1115–1121 (2007). [CrossRef]

]. Even higher precision and long term stability is required for red-shift surveys of distant quasars to observe directly the accelerated cosmic expansion [12

12. J. Liske, A. Grazian, E. Vanzella, M. Dessauges, M. Viel, L. Pasquini, M. Haehnelt, S. Cristiani, F. Pepe, G. Avila, P. Bonifacio, F. Bouchy, H. Dekker, B. Delabre, S. D'Odorico, V. D'Odorico, S. Levshakov, C. Lovis, M. Mayor, P. Molaro, L. Moscardini, M. T. Murphy, D. Queloz, P. Shaver, S. Udry, T. Wiklind, and S. Zucker, “Cosmic dynamics in the era of extremely large telescopes,” Mon. Not. R. Astron. Soc. 386(3), 1192–1218 (2008). [CrossRef]

]. The ability to perform such precise measurements of quasar spectra would also greatly help to pursue the hints for a temporal variation of fundamental constants [13

13. M. T. Murphy, J. K. Webb, and V. V. Flambaum, “Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra,” Mon. Not. R. Astron. Soc. 345(2), 609–638 (2003). [CrossRef]

].

For these applications, the use of a LFC as a calibration source appears to be well suited due to its high degree of stability and spectral uniformity [14

14. M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007). [CrossRef]

, 15

15. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008). [CrossRef] [PubMed]

]. Its spectrum consists of equally spaced narrow lines serving as an optical frequency standard of extreme precision [6

6. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000). [CrossRef] [PubMed]

]. The line spacing of the LFC – corresponding to its pulse repetition rate – can be increased by the use of Fabry-Pérot-cavities [15

15. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008). [CrossRef] [PubMed]

17

17. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]

] and thereby adapted to the resolving power of the best astronomical spectrographs [18

18. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010). [CrossRef]

]. The highest precision is achieved when the mode separation approximately equals three resolution elements of the spectrograph, resulting in an optimum repetition rate of typically 10 to 30 GHz [14

14. M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007). [CrossRef]

].

Spectral broadening of a fiber-based LFC filtered to such high repetition rates has already been successfully demonstrated in the IR [19

19. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010). [CrossRef] [PubMed]

]. For operation in the visible region frequency doubling of such a source significantly reduces the available pulse energy typically to the low-pJ regime. As a result, the challenge lies in the increase of the LFC spectral width to match the full optical bandwidth of a precision astronomical instrument. We demonstrate that tapering of suspended silica-strand PCFs creates devices suitable for broadening low-energy pulses sufficiently to cover the precision spectrograph HARPS (High Accuracy Radial velocity Planet Searcher) over most of its bandwidth, ranging from 380 - 690 nm [20

20. M. Mayor, F. Pepe, D. Queloz, F. Bouchy, G. Rupprecht, G. Lo Curto, G. Avila, W. Benz, J.-L. Bertaux, X. Bonfils, Th. Dall, H. Dekker, B. Delabre, W. Eckert, M. Fleury, A. Gilliotte, D. Gojak, J. C. Guzman, D. Kohler, J.-L. Lizon, A. Longinotti, C. Lovis, D. Megevand, L. Pasquini, J. Reyes, J.-P. Sivan, D. Sosnowska, R. Soto, S. Udry, A. van Kesteren, L. Weber, and U. Weilenmann, “Setting New Standards with HARPS,” Messenger 114, 20 (2003).

]. We discuss the impact of small core size changes on the shape and width of the spectrum.

2. Experimental details

3. Spectral broadening

100 fs (FWHM) pulses were launched into tapered samples with 30-cm-long taper waist, short untapered sections (between 2 and 5 cm long) at each end allowing launch efficiencies of ~50%. The average launched power was ~60 mW in all cases. The resulting output spectra, recorded using an optical spectrum analyzer, are shown in Fig. 2
Fig. 2 Spectral broadening (logarithmic plot) of 4.3 pJ pulses traversing 30 cm long pieces of the tapers shown in Fig. 1. The numbers correspond to the taper-waist core diameter in nm.
. It is clear that small changes in core diameter cause strong variations in the output spectrum, which however remains relatively flat between ~450 and ~600 nm. For certain core sizes an additional radiation band appears in the red spectral range. The widest spectrum (235 nm at the −20 dB level) occurs at a core diameter of 536 nm, with ZDWs at 510 nm and 620 nm.

The spectral shape is affected by the position of these two ZDWs relative to the pump wavelength. Reducing the core diameter below 536 nm shifts both ZDWs towards each other, the region of anomalous dispersion shrinking to zero at 507 nm. At this point soliton formation is prevented, spectral broadening is governed purely by self-phase modulation [25

25. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

], the absence of dispersive wave generation limiting the spectral width to ~50 nm (−20 dB level).

The ZDWs dictate the spectral positions of the dispersive waves [8

8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

], the core diameter strongly affecting the position of the long-wavelength ZDW (due to waveguide dispersion), whereas material dispersion dominates the short-wavelength ZDW, which remains relatively unaffected by changes in core diameter. The position of the red ZDW shapes the long-wavelength edge of the broadened spectra, the dispersive wave band moving into the IR as the core diameter increases. The conversion efficiency falls as the detuning of the dispersive wave frequency from the pump frequency rises. This causes the red radiation band to vanish at larger core diameters (Fig. 2b).

4. Numerical simulations

Figure 3
Fig. 3 (Color online) Simulated pulse propagation in a 40 cm long tapered PCF. The device had 2 cm long untapered sections at both ends and 1 cm long transitions, all of which are included in the simulations. The core diameter at the taper waist is 536 nm. The top figure shows the experimental and simulated spectrum at the fibre output.
shows the simulated propagation of a 10 pJ 100 fs pulse in a 30-cm-long taper waist with a uniform core diameter of 536 nm, with untapered input and output sections each 2 cm long. The GVD in the tapered section is ~4.3 ps2/km at the pump wavelength (530 nm). The generalized nonlinear Schrödinger equation was used [25

25. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

]:A(z,τ)z=D[A(z,τ)]+i(γ(ω0)+iγ1τ)×(A(z,τ)R(t)|A(z,τ)|2dt), where A(z, t) is the complex time-domain envelope of the electric field, τ = t – z/vg is the time in a reference frame moving with the group velocity of the pulse, t is the physical time and vg the group velocity. The operator D takes care of the group velocity dispersion. The function R(t) includes the Kerr and Raman effects in fused silica (for more details see [3

3. S. P. Stark, A. Podlipensky, N. Y. Joly, and P. St. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27(3), 592–598 (2010). [CrossRef]

,25

25. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

]). The nonlinearity of the PCF is introduced by the nonlinear coefficient γ(ω0) = n200/c/Aeff0), evaluated at the center frequency of the input pulse. Here, n2 is the nonlinear index of refraction (2.7×10−20m2/W for silica) and Aeff is the effective area of the fundamental mode. The time derivative accounts for self-steepening and γ1 = ∂γ/∂ω is the first order correction to the nonlinear coefficient.

The short untapered input section, which has a core diameter of 2 μm, does not significantly affect the temporal shape of the pulse at the start of the tapered section. The nonlinear coefficient in the taper waist is 1.1 W−1m−1, yielding a soliton order N = 8. At ~10 cm from the start of the tapered section, the pulse spectrum broadens extensively. Fission of the N = 8 soliton leads to breakup into fundamental solitons [8

8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

]. At the same time, dispersive waves are generated at ~435 and ~740 nm. The first ejected soliton has the shortest duration (13 fs in the simulations) so would undergo the strongest soliton self-frequency red-shift [8

8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

] if the presence of the ZDW at 620 nm did not cancel it. As a consequence, the soliton emits dispersive radiation at around 700 nm [3

3. S. P. Stark, A. Podlipensky, N. Y. Joly, and P. St. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27(3), 592–598 (2010). [CrossRef]

].

5. Conclusion

References and links

1.

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]

2.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]

3.

S. P. Stark, A. Podlipensky, N. Y. Joly, and P. St. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27(3), 592–598 (2010). [CrossRef]

4.

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St J Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004). [CrossRef] [PubMed]

5.

D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008). [CrossRef] [PubMed]

6.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000). [CrossRef] [PubMed]

7.

J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005). [CrossRef] [PubMed]

8.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

9.

M. Mayor and D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature 378(6555), 355–359 (1995). [CrossRef]

10.

L. Billings, “Astronomy: exoplanets on the cheap,” Nature 470(7332), 27–29 (2011). [CrossRef] [PubMed]

11.

C. Lovis and F. Pepe, “A new list of thorium and argon spectral lines in the visible,” A&A. 468(3), 1115–1121 (2007). [CrossRef]

12.

J. Liske, A. Grazian, E. Vanzella, M. Dessauges, M. Viel, L. Pasquini, M. Haehnelt, S. Cristiani, F. Pepe, G. Avila, P. Bonifacio, F. Bouchy, H. Dekker, B. Delabre, S. D'Odorico, V. D'Odorico, S. Levshakov, C. Lovis, M. Mayor, P. Molaro, L. Moscardini, M. T. Murphy, D. Queloz, P. Shaver, S. Udry, T. Wiklind, and S. Zucker, “Cosmic dynamics in the era of extremely large telescopes,” Mon. Not. R. Astron. Soc. 386(3), 1192–1218 (2008). [CrossRef]

13.

M. T. Murphy, J. K. Webb, and V. V. Flambaum, “Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra,” Mon. Not. R. Astron. Soc. 345(2), 609–638 (2003). [CrossRef]

14.

M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007). [CrossRef]

15.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008). [CrossRef] [PubMed]

16.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph Calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008). [CrossRef]

17.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]

18.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010). [CrossRef]

19.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010). [CrossRef] [PubMed]

20.

M. Mayor, F. Pepe, D. Queloz, F. Bouchy, G. Rupprecht, G. Lo Curto, G. Avila, W. Benz, J.-L. Bertaux, X. Bonfils, Th. Dall, H. Dekker, B. Delabre, W. Eckert, M. Fleury, A. Gilliotte, D. Gojak, J. C. Guzman, D. Kohler, J.-L. Lizon, A. Longinotti, C. Lovis, D. Megevand, L. Pasquini, J. Reyes, J.-P. Sivan, D. Sosnowska, R. Soto, S. Udry, A. van Kesteren, L. Weber, and U. Weilenmann, “Setting New Standards with HARPS,” Messenger 114, 20 (2003).

21.

C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1).,” Opt. Express 18(12), 13239–13249 (2010). [CrossRef] [PubMed]

22.

G. Chang, C. H. Li, D. F. Phillips, R. L. Walsworth, and F. X. Kärtner, “Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers,” Opt. Express 18(12), 12736–12747 (2010). [CrossRef] [PubMed]

23.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005). [CrossRef]

24.

F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2010).

25.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

26.

R.A. Probst, T. Steinmetz, T. Wilken, T.W. Hänsch, R. Holzwarth, Th. Udem, “Effects of nonlinear processes in a broadband visible astro-comb,” to be published.

27.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000). [CrossRef]

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 25, 2011
Revised Manuscript: July 4, 2011
Manuscript Accepted: July 6, 2011
Published: August 1, 2011

Citation
S. P. Stark, T. Steinmetz, R. A. Probst, H. Hundertmark, T. Wilken, T. W. Hänsch, Th. Udem, P. St. J. Russell, and R. Holzwarth, "14 GHz visible supercontinuum generation: calibration sources for astronomical spectrographs," Opt. Express 19, 15690-15695 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15690


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]
  3. S. P. Stark, A. Podlipensky, N. Y. Joly, and P. St. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27(3), 592–598 (2010). [CrossRef]
  4. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St J Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004). [CrossRef] [PubMed]
  5. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008). [CrossRef] [PubMed]
  6. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000). [CrossRef] [PubMed]
  7. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005). [CrossRef] [PubMed]
  8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  9. M. Mayor and D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature 378(6555), 355–359 (1995). [CrossRef]
  10. L. Billings, “Astronomy: exoplanets on the cheap,” Nature 470(7332), 27–29 (2011). [CrossRef] [PubMed]
  11. C. Lovis and F. Pepe, “A new list of thorium and argon spectral lines in the visible,” A&A. 468(3), 1115–1121 (2007). [CrossRef]
  12. J. Liske, A. Grazian, E. Vanzella, M. Dessauges, M. Viel, L. Pasquini, M. Haehnelt, S. Cristiani, F. Pepe, G. Avila, P. Bonifacio, F. Bouchy, H. Dekker, B. Delabre, S. D'Odorico, V. D'Odorico, S. Levshakov, C. Lovis, M. Mayor, P. Molaro, L. Moscardini, M. T. Murphy, D. Queloz, P. Shaver, S. Udry, T. Wiklind, and S. Zucker, “Cosmic dynamics in the era of extremely large telescopes,” Mon. Not. R. Astron. Soc. 386(3), 1192–1218 (2008). [CrossRef]
  13. M. T. Murphy, J. K. Webb, and V. V. Flambaum, “Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra,” Mon. Not. R. Astron. Soc. 345(2), 609–638 (2003). [CrossRef]
  14. M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007). [CrossRef]
  15. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008). [CrossRef] [PubMed]
  16. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph Calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008). [CrossRef]
  17. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  18. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010). [CrossRef]
  19. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010). [CrossRef] [PubMed]
  20. M. Mayor, F. Pepe, D. Queloz, F. Bouchy, G. Rupprecht, G. Lo Curto, G. Avila, W. Benz, J.-L. Bertaux, X. Bonfils, Th. Dall, H. Dekker, B. Delabre, W. Eckert, M. Fleury, A. Gilliotte, D. Gojak, J. C. Guzman, D. Kohler, J.-L. Lizon, A. Longinotti, C. Lovis, D. Megevand, L. Pasquini, J. Reyes, J.-P. Sivan, D. Sosnowska, R. Soto, S. Udry, A. van Kesteren, L. Weber, and U. Weilenmann, “Setting New Standards with HARPS,” Messenger 114, 20 (2003).
  21. C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1).,” Opt. Express 18(12), 13239–13249 (2010). [CrossRef] [PubMed]
  22. G. Chang, C. H. Li, D. F. Phillips, R. L. Walsworth, and F. X. Kärtner, “Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers,” Opt. Express 18(12), 12736–12747 (2010). [CrossRef] [PubMed]
  23. H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005). [CrossRef]
  24. F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2010).
  25. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  26. R.A. Probst, T. Steinmetz, T. Wilken, T.W. Hänsch, R. Holzwarth, Th. Udem, “Effects of nonlinear processes in a broadband visible astro-comb,” to be published.
  27. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited