OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16229–16235
« Show journal navigation

Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K

Stefan Menzel, Laurent Diehl, Christian Pflügl, Anish Goyal, Christine Wang, Antonio Sanchez, George Turner, and Federico Capasso  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16229-16235 (2011)
http://dx.doi.org/10.1364/OE.19.016229


View Full Text Article

Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report quantum cascade laser (QCL) master-oscillator power-amplifiers (MOPAs) at 300 K reaching output power of 1.5 W for tapered devices and 0.9 W for untapered devices. The devices display single-longitudinal-mode emission at λ = 7.26 µm and single-transverse-mode emission at TM00. The maximum amplification factor is 12 dB for the tapered devices.

© 2011 OSA

1. Introduction

Quantum cascade lasers (QCLs) [1

1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]

,2

2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001). [CrossRef]

] are a well-established laser source in the mid-infrared spectral region. Their use in spectroscopic applications has been demonstrated in a variety of experiments [3

3. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002). [CrossRef]

,4

4. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]

]. QCLs with high output power and single-mode emission are especially well suited for applications such as stand-off detection [5

5. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009). [CrossRef] [PubMed]

,6

6. F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010). [CrossRef]

] and liquid phase spectroscopy [7

7. L. Diehl, C. Pflügl, M. F. Witinski, P. Wang, T. J. Tague, Jr., and F. Capasso, “Fourier transform spectrometers utilizing mid-infrared quantum cascade lasers,” Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010, 5500620.

] with a high extinction ratio. Achieving high output power while maintaining a single-mode emission spectrum and good beam quality, however, is difficult.

The most straightforward approach is to increase the geometric dimensions of the laser, but simply widening the laser cavity to obtain very broad laser ridges is not viable as it leads to poor beam quality and a multimode spectrum arising from high-order transverse modes [8

8. Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gökden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95(22), 221104 (2009). [CrossRef]

,9

9. N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett. 102(1), 013901 (2009). [CrossRef] [PubMed]

]. The most promising and perhaps most complicated approach to date utilizes broad-area devices with two-dimensional photonic-crystal distributed-feedback (PCDFB) gratings patterned on the side of the waveguide [10

10. C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008). [CrossRef]

]; single-mode interband cascade lasers 400 μm wide with M2<2 were demonstrated up to the highest current achievable although the output power was limited by diffraction losses and a low coupling coefficient. The implementation of this approach in QCLs at longer wavelength has been less successful. Significant progress has been made recently [11

11. B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010). [CrossRef]

] leading to demonstration of broad-area QCLs with peak output power of 34 W at room temperature, but the far field of the device degraded significantly as function of current. High power in QCLs can also be achieved by adjusting the doping in the structure, allowing devices to operate at high current densities and hence high optical gain. This approach, however, is limited by device self-heating, jeopardizing high-performance continuous-wave operation; even in pulsed operation it typically results in a significant broadening of the linewidth of the emission spectrum.

A different way to achieve high-output-power single-mode lasers is by fabrication of a monolithic two-section device, where one section is a DFB laser acting as a seed laser, referred to as master oscillator (MO), and the other section serves as a power amplifier (PA) [12

12. H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett. 17(1), 13–15 (2005). [CrossRef]

,13

13. M. Spreemann, M. Lichtner, M. Radziunas, U. Bandelow, and H. Wenzel, “Measurement and simulation of distributed-feedback tapered master-oscillator power amplifiers,” IEEE J. Quantum Electron. 45(6), 609–616 (2009) (and references therein). [CrossRef]

]. This approach has been particularly successful with near-infrared diode lasers, and MOPA lasers with continuous wave (CW) power up to 10 W have also been demonstrated [14

14. H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett. 43(3), 160–162 (2007). [CrossRef]

]. The first proof-of-concept QCL MOPAs were demonstrated by Troccoli et al. [15

15. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4 µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002). [CrossRef]

].

The most attractive features of MOPA lasers are that only standard elements such as a DFB laser are required and that single-mode emission and excellent beam quality are assured as long as the seed DFB laser supports the fundamental TM00 mode. Moreover, in MOPA lasers the coupling losses are minimal since the output from the MO couples directly into the PA and the entire device is fabricated on-chip by means of standard semiconductor technology. The output power of the MOPA is determined first by the MO output power and second by the gain coefficient and the length of the PA, which is a single-pass traveling-wave amplifier. Tapering the PA allows higher-power amplification prior to reaching possible gain saturation. Also the far-field angle in the chip plane is reduced by the larger PA facet.

In this paper we report MOPA QCL devices emitting peak output power of 1.5 W at 300 K with single-mode emission at λ = 7.26 µm. The devices have a low-reflectivity AR coating applied to the PA end facet. Devices with untapered and tapered PAs were fabricated.

2. Materials and fabrication

The QCL active region material was grown by metalorganic vapor-phase epitaxy (MOVPE) on a conducting InP substrate. To enable future use of the QCL material for multiple-wavelength MOPA arrays, we used a graded-active-region design following closely the broadband design reported in Ref [16

16. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002). [CrossRef] [PubMed]

]. This design does not allow for high output power because each cascaded active region has a lasing transition at a slightly different wavelength, but it provides a broad gain spectrum.

The MOVPE layer sequence starting from the substrate was 4 µm of InP (Si doped, n = 1 × 1017cm−3) followed by 0.8 µm of InGaAs (Si doped, n = 1 × 1016cm−3), both layers serving as the lower waveguide cladding. The graded active region was a slightly modified version of that in Ref. 16

16. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002). [CrossRef] [PubMed]

. Modifications included changes in quantum-well thicknesses of each cascaded active region to shift the gain to approximately λcenter = 7.3 µm. The layer sequences for the first and last active region/injector are as follows: (in Ångstrom, barrier layers in bold) 33 20 32 21 30 23 29 24 28 24 27 42 18 13 60 14 48 20first ~6.5 µm) and 36 18 35 19 35 19 34 20 34 41 22 12 67 13 52 20last ~8µm). A chirp in emission wavelength for the intermediate sequences was then applied similar to Ref. 16

16. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002). [CrossRef] [PubMed]

.

The structure was subsequently capped with 500 nm of InGaAs (Si doped, n = 1 × 1016cm−3), 4.0 µm of InP (Si doped, n = 1 × 1017cm−3), 0.5 µm of InP (Si doped, n = 5 × 1018cm−3) and 20 nm of InGaAs (Si doped, n = 1 × 1019cm−3), which served as the upper waveguide cladding and top contact layers, respectively.

3. Measurements

All measurements were performed at T = 300 K under pulsed conditions (20 kHz / 100 ns) using a calibrated thermopile detector for output power measurements.

Spectra of the fabricated MOPA device with a PA taper angle of 1° are shown in Fig. 1
Fig. 1 Spectra of a MOPA with 1° tapered amplifier. The DFB section is kept at 900 mA. The inset shows an illustration of a MOPA device. The light intensity distribution (false colors) has been calculated using a finite-difference time-domain technique. The device geometry is indicated by grey lines. The DFB laser acts as the seed laser while the tapered section is a single-pass traveling wave amplifier.
. The single-mode emission wavelength λ is 7.26 µm. A side-mode suppression ratio >20 dB is measured and preserved at all pumping currents for both MO and PA. The full width at half-maximum (FWHM) of Δk = 1 cm−1 is due to self-heating during the current pulse and does not broaden with higher PA currents. The inset shows a schematic of the device structure for a tapered MOPA QCL, where the mode adiabatically spreads in the PA section and is amplified.

Figure 2a
Fig. 2 a) L-I characteristics for different currents in the MO DFB section at T = 300 K. b) Comparison of characteristics for two MOPAs with tapered and untapered PAs on a current-density scale.
shows the dependence of the peak output power of the MOPA devices on the MO and PA pumping currents at 300 K, and Fig. 2b shows light-current (L-I) characteristics of a tapered amplifier and untapered amplifier on a current-density scale. In Fig. 2a, the device with no taper angle reaches a peak power Pout~900 mW for a MO current IMO = 900 mA corresponding to the rollover point of the L-I characteristic. Devices with 1° taper angle displayed higher peak output power with a maximum Pout = 1.5 W, which corresponds to an average power Pav = 3 mW for a duty cycle of 0.2%. To estimate the amplification through the amplifier section one needs to know the power input from the MO section into the amplifier. This can be deduced from the data in Fig. 2 if the transparency current density jtrans is known. Transparency current is defined as the minimum current where population inversion is reached and light is transmitted without being damped or amplified [17

17. A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008). [CrossRef]

20

20. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009). [CrossRef]

]. One method to determine this parameter is to use the dependence of the threshold current jth and the slope efficiency versus cavity length as explained in detail in Ref [20

20. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009). [CrossRef]

]. In our case, we processed Fabry-Perot QCLs from the same material used for the MOPAs but did not observe a clear dependence of the slope efficiency on the cavity length, especially for short lasers, to determine jtrans.

Instead, we use the value of the threshold current density for 3mm long Fabry-Perot lasers (jth~1.75 kA/cm2, see Fig. 3
Fig. 3 Light-Current-Voltage characteristic for a 3mm long Fabry-Perot cavity device fabricated from the same wafer as the QCL MOPA devices.
) and the relation
jth=αw+αmΓg+jtrans,
(1)
where αw is the waveguide loss (cm−1), g is the gain coefficient (cm/kA), Γ is the mode confinement factor and αm is the mirror loss (αm as in Ref. 19

19. J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous-wave operation of λ~4.6 µm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron. 44(8), 747–754 (2008). [CrossRef]

).

From the data shown in Fig. 2b for the tapered device and assuming a transparency current density of 0.55 kA/cm2, we find a transmitted light intensity Pt = P(j = jtrans)~90 mW for a MO current of 900 mA, resulting in an amplification factor as high as 16.6, equivalent to ~12 dB, at the rollover point.

In Fig. 2b, the linear dependence of the untapered MOPA output power on the amplifier current is strong evidence that the gain in the PA is saturated. The tapered MOPA output power instead displays a super-linear dependence, with an exponential growth up to ~1.5 kA/cm2 and a linear dependence at higher current densities up to ~3 kA/cm2; beyond this point the L-I curve becomes sublinear and eventually rolls over because of the decreasing tunnel coupling between the injector ground state and the upper laser level, a behavior typical of QCLs.

Above the transparency current density jtrans, the amplification of the light emitted from the MO section in the PA can be written as
Pout=Pine[(αw+gΓ(jjtrans))d],
(2)
where j is the current density (kA/cm2), d is the amplifier length, and Pin is the input power from the MO.

Equation (2) can be rewritten as

Pout=PineαwdegΓ(jjtrans)d=PtegΓ(jjtrans)d
(3)

Assuming the transparency current density jtrans = 0.55 kA/cm2 and with Pt(j = jtrans) = 0.09 W, we deduce g⋅Γ = 10.5 cm/kA for a MO current of 900 mA, which is in good agreement with our calculations. Note that varying jtrans does not change significantly the value of g⋅Γ deduced from the fit. By assuming a gain of 10.5 cm/kA, which is close to the value calculated and found by fitting data, the amplification factor assuming no saturation eαwdegΓ(jjtrans)d reaches 49.

A critical factor in predicting the MOPA output power is the MO power Pin injected into the PA for amplification. Since the MO is a DFB laser, the output power from both laser end facets relative to each other depends strongly on the cleaved end facet position and can vary depending on whether the DFB section ends with a higher or lower effective refractive index element. The reason for this effect is a variation of the electromagnetic field distribution along the grating, depending on the DFB end facet position with respect to the DFB grating [21

21. B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009). [CrossRef]

]. To eliminate this uncertainty, future devices will include an AR coating on the MO end facet, in addition to a quarter-wavelength shift [22

22. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., chapter 16 (Oxford University Press, 2006).

] incorporated into the DFB grating. The AR coating reduces the end facet feedback resulting in a symmetric electromagnetic field distribution along the grating. Quarter-wavelength shifts are primarily used to ensure single-mode emission but can also be used to displace the center of the intensity distribution along the DFB grating closer to the PA, thus increasing Pin.

Figure 4
Fig. 4 Far-field measurements in the chip plane for two different taper angles. The PA facet widths are 15 μm (untapered) and 47 μm (1° taper angle). The master oscillator DFB section current is close to rollover (860 mA). Solid lines represent Gaussian fitting curves.
shows far-field measurements in the plane of the chip measured at different PA currents. Measurements of FWHM are narrower for tapered devices than for untapered devices by a factor of 3 (1° taper angle, ~10° FWHM; untapered, ~30° FWHM). The PA end facet widths for untapered and 1° tapered devices are 15 μm and 47 μm, respectively, in good agreement with the FWHM reduction. Theoretical values for the diffraction half-angles θ (FWHM = 2⋅θ) can be estimated for comparison from θ = 2⋅λ/π⋅w (e.g., see Ref [22

22. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., chapter 16 (Oxford University Press, 2006).

].) and are θuntapered = 17.6° and θtapered = 5.6° for λ = 7.26 µm. Therefore, the theoretical and measured divergences are in good agreement, indicating adiabatic expansion of the optical mode within the tapered PA. This is important for the integration of QCL MOPAs into optical systems.

4. Summary

We report QCL MOPAs reaching output power levels of 1.5 W at room temperature corresponding to an amplifier gain of 12 dB. Single-transverse-mode emission with a FWHM angle of 10° for a taper angle of 1° was measured, and the devices showed single-longitudinal-mode lasing at λ = 7.26 µm.

Acknowledgements

References and links

1.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]

2.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001). [CrossRef]

3.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002). [CrossRef]

4.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]

5.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009). [CrossRef] [PubMed]

6.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010). [CrossRef]

7.

L. Diehl, C. Pflügl, M. F. Witinski, P. Wang, T. J. Tague, Jr., and F. Capasso, “Fourier transform spectrometers utilizing mid-infrared quantum cascade lasers,” Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010, 5500620.

8.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gökden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95(22), 221104 (2009). [CrossRef]

9.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett. 102(1), 013901 (2009). [CrossRef] [PubMed]

10.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008). [CrossRef]

11.

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010). [CrossRef]

12.

H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett. 17(1), 13–15 (2005). [CrossRef]

13.

M. Spreemann, M. Lichtner, M. Radziunas, U. Bandelow, and H. Wenzel, “Measurement and simulation of distributed-feedback tapered master-oscillator power amplifiers,” IEEE J. Quantum Electron. 45(6), 609–616 (2009) (and references therein). [CrossRef]

14.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett. 43(3), 160–162 (2007). [CrossRef]

15.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4 µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002). [CrossRef]

16.

C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002). [CrossRef] [PubMed]

17.

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008). [CrossRef]

18.

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007). [CrossRef]

19.

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous-wave operation of λ~4.6 µm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron. 44(8), 747–754 (2008). [CrossRef]

20.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009). [CrossRef]

21.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009). [CrossRef]

22.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., chapter 16 (Oxford University Press, 2006).

23.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 µm operating in continuous wave up to 423 K,” IEEE Photon. Technol. Lett. 21(12), 814–816 (2009). [CrossRef]

24.

B. Gökden, Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High power 1D and 2D photonic crystal distributed feedback quantum cascade lasers,” SPIE Proc. 7945, 79450C, 79450C-12 (2011). [CrossRef]

25.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010). [CrossRef]

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 7, 2011
Revised Manuscript: July 21, 2011
Manuscript Accepted: July 24, 2011
Published: August 9, 2011

Citation
Stefan Menzel, Laurent Diehl, Christian Pflügl, Anish Goyal, Christine Wang, Antonio Sanchez, George Turner, and Federico Capasso, "Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K," Opt. Express 19, 16229-16235 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-16229


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001). [CrossRef]
  3. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002). [CrossRef]
  4. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]
  5. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009). [CrossRef] [PubMed]
  6. F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010). [CrossRef]
  7. L. Diehl, C. Pflügl, M. F. Witinski, P. Wang, T. J. Tague, Jr., and F. Capasso, “Fourier transform spectrometers utilizing mid-infrared quantum cascade lasers,” Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010, 5500620.
  8. Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gökden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95(22), 221104 (2009). [CrossRef]
  9. N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett. 102(1), 013901 (2009). [CrossRef] [PubMed]
  10. C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008). [CrossRef]
  11. B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010). [CrossRef]
  12. H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett. 17(1), 13–15 (2005). [CrossRef]
  13. M. Spreemann, M. Lichtner, M. Radziunas, U. Bandelow, and H. Wenzel, “Measurement and simulation of distributed-feedback tapered master-oscillator power amplifiers,” IEEE J. Quantum Electron. 45(6), 609–616 (2009) (and references therein). [CrossRef]
  14. H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett. 43(3), 160–162 (2007). [CrossRef]
  15. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4 µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002). [CrossRef]
  16. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002). [CrossRef] [PubMed]
  17. A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008). [CrossRef]
  18. S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007). [CrossRef]
  19. J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous-wave operation of λ~4.6 µm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron. 44(8), 747–754 (2008). [CrossRef]
  20. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009). [CrossRef]
  21. B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009). [CrossRef]
  22. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., chapter 16 (Oxford University Press, 2006).
  23. A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 µm operating in continuous wave up to 423 K,” IEEE Photon. Technol. Lett. 21(12), 814–816 (2009). [CrossRef]
  24. B. Gökden, Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High power 1D and 2D photonic crystal distributed feedback quantum cascade lasers,” SPIE Proc. 7945, 79450C, 79450C-12 (2011). [CrossRef]
  25. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited