## Time-cost analysis of a quantum key distribution system clocked at 100 MHz |

Optics Express, Vol. 19, Issue 18, pp. 17729-17737 (2011)

http://dx.doi.org/10.1364/OE.19.017729

Acrobat PDF (846 KB)

### Abstract

We describe the realization of a quantum key distribution (QKD) system clocked at 100 MHz. The system includes classical postprocessing implemented via software, and is operated over a 12 km standard telecommunication dark fiber in a real-world environment. A time-cost analysis of the sifted, error-corrected, and secret key rates relative to the raw key rate is presented, and the scalability of our implementation with respect to higher secret key rates is discussed.

© 2011 OSA

## 1. Introduction

3. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duek, N. Ltkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. **81**, 1301 (2009). [CrossRef]

8. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, “Quantum key distribution system clocked at 2 GHz,” Opt. Express **13**, 3015–3020 (2005). [CrossRef] [PubMed]

10. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. **96**, 161102 (2010). [CrossRef]

11. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legre, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Langer, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” arXiv:1103.3566 (2010).

12. M. Peev, C. Pacher, R. Allaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Frst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hbel, G. Humer, T. Lnger, M. Legr, R. Lieger, J. Lodewyck, T. Lornser, N. Ltkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. **11**, 075001 (2009). [CrossRef]

13. G. Brassard and L. Salvail, “Lecture notes in computer science,” in *Advances in Cryptology EUROCRYPT ’93* (Springer, 1994), vol. 765, pp. 410–23. [CrossRef]

## 2. Our QKD System

### 2.1. Hardware

3. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duek, N. Ltkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. **81**, 1301 (2009). [CrossRef]

15. W. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. **91**, 057901 (2003). [CrossRef] [PubMed]

17. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A **72**, 012326 (2005). [CrossRef]

18. M. Dǔsek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. **169**, 103–108 (1999). [CrossRef]

19. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. **85**, 1330–1333 (2000). [CrossRef] [PubMed]

20. I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real world quantum key distribution with quantum frames,” N. J. Phys. **11**, 095001 (2009). [CrossRef]

20. I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real world quantum key distribution with quantum frames,” N. J. Phys. **11**, 095001 (2009). [CrossRef]

*quantum laser diode*and are attenuated using a variable attenuator (ATT). To create the required signal and two decoy states, we use an intensity modulator (IM), generating weak pulses of light with mean photon numbers of

*μ*, 0.2

*μ*, 0.01

*μ*, respectively (the fixed relation between these three values is due to the way the attenuator and intensity modulator are used to generate loss). To encode the required polarization states, ± 45° linear polarized, and right- and left-circular polarized states, we use a polarization modulator (PM). Both modulators are configured to ensure passive compensation of temperature-dependent birefringence and polarization mode dispersion. On the receiver side, a photodiode is placed behind a 90/10 beamsplitter; it allows detecing the strong optical pulses, generated by the

*classical laser diode*, that form the control frames. Next, a 50/50 beamsplitter is placed to randomly select one of the two polarization bases for qubit measurement. Per basis, a voltage-controlled polarization controller (PC) and an optical detector (a low-bandwidth powermeter in the current system, not shown) are used to compensate for time-varying polarization changes in the transmission line. This procedure relies on feedback from the classical control frames.

20. I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real world quantum key distribution with quantum frames,” N. J. Phys. **11**, 095001 (2009). [CrossRef]

23. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near-infrared,” Appl. Phys. Lett. **91**, 041114 (2007). [CrossRef]

24. A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennet, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. **94**, 231113 (2009). [CrossRef]

6. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics **4**, 686–689 (2010). [CrossRef]

6. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics **4**, 686–689 (2010). [CrossRef]

25. D. J. Rogers, J. C. Bienfang, A. Nakassis, H. Xu, and C. W. Clark, “Detector dead-time effects and paralyzability in high-speed quantum key distribution,” N. J. Phys. **9**, 319 (2007). [CrossRef]

### 2.2. Software

26. R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory **8**(1), 21–28 (1962). [CrossRef]

29. R. C. Agarwal and C. S. Burrus, “Number theoretic transforms to implement fast digital convolution,” Proc. IEEE **63**(4), 550–560 (1975). [CrossRef]

## 3. System Performance

*μ*between 0.40 and 7.0 photons per pulse. Given the loss of 6.5 dB in the quantum channel, a detector efficiency of ∼10%, as well as additional attenuation of ∼ 3.5 dB in Bob’s device, this yields raw key rates between ∼0.2 and 4.8 kbps. This calculation also takes into account that quantum data is sent only during ∼10% of the system operation time; this is further discussed below. While this procedure does not deliver secret keys for large values of

*μ*(e.g.

*μ*> 1), it does allow us to gauge how the system responds in the event of large raw key rates. However, we point out that there is a limit to this procedure. Indeed, as

*μ*increases, the probability that multiple detectors detect photons simultaneously also increases. This leads to larger processing requirements as only one, randomly selected detection is kept for subsequent steps [30

30. N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A **61**, 052304 (2000). [CrossRef]

*μ*≤ 7).

*μ*from 0.30 to 20 photons per pulse. Obviously, using only one detector does not allow distributing a secret key. Nevertheless, this setup allows increasing the raw key rate, and hence assessing the system performance in the event of large rates. More precisely, it delivers one quarter (i.e. 2.24 to 121 kbps) of the raw key rate we expect in a fully implemented QKD system with four high-rate detectors while providing a similar QBER. All key rates listed below and in Fig. 3 refer to the actually detected (not extrapolated) rates.

*μ*= 1. The QBER obtained using the high-rate detector is lower due to a better ratio between detection efficiency and dark count probability. In addition, the QBER decreases as

*μ*is increased since the higher detection rates make dark counts less significant. Thus, the 33.488 kbps rate obtained in the actual system is due to limited computational resources. Similarly, we also conclude that the sifted key rate is affected by process competition.

17. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A **72**, 012326 (2005). [CrossRef]

32. R. Y. Q. Cai and V. Scarani, “Finite-key analysis for practical implementations of quantum key distribution,” N. J. Phys. **11**, 045024 (2009). [CrossRef]

11. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legre, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Langer, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” arXiv:1103.3566 (2010).

29. R. C. Agarwal and C. S. Burrus, “Number theoretic transforms to implement fast digital convolution,” Proc. IEEE **63**(4), 550–560 (1975). [CrossRef]

33. C.-H. F. Fung, X. Ma, and H.-F. Chau, “Practical issues in quantum-key-distribution processing,” Phys. Rev. A **81**(1), 012318 (2010). [CrossRef]

35. Y. Bo, R. Karri, and D. A. McGrew, “A high-speed hardware architecture for universal message authentication code,” IEEE J. Sel. Areas Commun. **24**(10), 1831–1839 (2006). [CrossRef]

## 4. Proposed Improvements

^{7}qubits per frame. This limitation is present in our system for both detector setups, as Alice’s system generates qubits at 100 MHz even when the detector gate rate is limited to 1 MHz. While reducing Alice’s clock frequency in the case of the commercial detectors would bring the time used for qubit transmission much closer to 100% of the system operation time, this would ideally provide only a 8–9 fold increase in the raw key rate. In comparison, using the fast detector provided more than a 60 fold increase in raw key rate. In the case of the fast detector setup, it is possible to add more memory to the I/O card. However, this would result in a proportional increase in the time required for the data preparation (a), data transfer (b), and key sifting plus error correction (g) steps. This suggests that the following needs to be explored: a faster interface to the computer, faster random number generation, as well as more efficient post-processing, for instance using dedicated hardware that may also take care of authentication.

26. R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory **8**(1), 21–28 (1962). [CrossRef]

27. D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett. **33**(6), 457–458 (1997). [CrossRef]

**11**, 095001 (2009). [CrossRef]

^{4}bits was used for the LDPC code in order to evaluate the QBER, and hence provide feedback to initiate the polarization control procedure in a timely fashion. The block length of the code can be increased significantly when using fast detectors, leading to better performance relative to the Shannon limit. This, in turn, translates to a higher secret key rate since less information is revealed to the eavesdropper in this process.

37. M. Fürst, H. Weier, S. Nauerth, D. G. Marangon, C. Kurtsiefer, and H. Weinfurter, “High speed optical quantum random number generator,” Opt. Express **18**(12), 13029–13037 (2010). [CrossRef] [PubMed]

^{6}qubits are generated per second, and each qubit is determined by six random bits with uniform distribution of zeros and ones [38

38. Two bits are required to determine each polarization state, and four bits allow a random choice of vacuum, decoy and signal states with the desired distribution. Furthermore, some randomness is required for privacy amplification. Note that no random numbers are required at the receiver end due to the passive basis choice.

24. A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennet, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. **94**, 231113 (2009). [CrossRef]

39. T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express **17**(11), 9053–9061 (2009). [CrossRef] [PubMed]

## 5. Conclusions

## Acknowledgments

## References and links

1. | C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” |

2. | N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. |

3. | V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duek, N. Ltkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. |

4. | B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. |

5. | A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express |

6. | L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics |

7. | N. Jain, C. Wittman, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” arXiv: 1103.2327v2, (2011). |

8. | K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, “Quantum key distribution system clocked at 2 GHz,” Opt. Express |

9. | Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. |

10. | A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. |

11. | M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legre, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Langer, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” arXiv:1103.3566 (2010). |

12. | M. Peev, C. Pacher, R. Allaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Frst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hbel, G. Humer, T. Lnger, M. Legr, R. Lieger, J. Lodewyck, T. Lornser, N. Ltkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. |

13. | G. Brassard and L. Salvail, “Lecture notes in computer science,” in |

14. | D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. |

15. | W. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. |

16. | X. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. |

17. | X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A |

18. | M. Dǔsek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. |

19. | G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. |

20. | I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real world quantum key distribution with quantum frames,” N. J. Phys. |

21. | In the current setup, the number of sifted key bits to be processed in one execution of error correction is fixed to 10 kb. The time required to collect this data is setup dependent. |

22. | C. Healey, I. Lucio-Martinez, M. R. E. Lamont, X. F. Mo, and W. Tittel, “Characterization of an InGaAs/InP single-photon detector at 200 MHz gate rate,” in preparation. |

23. | Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near-infrared,” Appl. Phys. Lett. |

24. | A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennet, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. |

25. | D. J. Rogers, J. C. Bienfang, A. Nakassis, H. Xu, and C. W. Clark, “Detector dead-time effects and paralyzability in high-speed quantum key distribution,” N. J. Phys. |

26. | R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory |

27. | D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett. |

28. | D. Pearson, “High-speed QKD reconciliation using forward error correction,” Quantum Commun. Meas. Comput. |

29. | R. C. Agarwal and C. S. Burrus, “Number theoretic transforms to implement fast digital convolution,” Proc. IEEE |

30. | N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A |

31. | P. Rice and J. Harrington, “Numerical analysis of decoy state quantum key distribution protocols,” arxiv:0901.0013 (2009). |

32. | R. Y. Q. Cai and V. Scarani, “Finite-key analysis for practical implementations of quantum key distribution,” N. J. Phys. |

33. | C.-H. F. Fung, X. Ma, and H.-F. Chau, “Practical issues in quantum-key-distribution processing,” Phys. Rev. A |

34. | J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, “UMAC: fast and secure message authentication,” Advances in Cryptology CRYPTO 99 , Lecture Notes in Computer Science, |

35. | Y. Bo, R. Karri, and D. A. McGrew, “A high-speed hardware architecture for universal message authentication code,” IEEE J. Sel. Areas Commun. |

36. | B. Levine, R. Reed Taylor, and H. Schmit, “Implementation of near Shannon limit error-correcting codes using reconfigurable hardware,” IEEE Symposium on Field-Programmable Custom Computing Machines , 217–226 (2000). |

37. | M. Fürst, H. Weier, S. Nauerth, D. G. Marangon, C. Kurtsiefer, and H. Weinfurter, “High speed optical quantum random number generator,” Opt. Express |

38. | Two bits are required to determine each polarization state, and four bits allow a random choice of vacuum, decoy and signal states with the desired distribution. Furthermore, some randomness is required for privacy amplification. Note that no random numbers are required at the receiver end due to the passive basis choice. |

39. | T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express |

**OCIS Codes**

(060.2330) Fiber optics and optical communications : Fiber optics communications

(060.5565) Fiber optics and optical communications : Quantum communications

(270.5568) Quantum optics : Quantum cryptography

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: May 19, 2011

Revised Manuscript: June 23, 2011

Manuscript Accepted: June 23, 2011

Published: August 25, 2011

**Citation**

X. F. Mo, I. Lucio-Martinez, P. Chan, C. Healey, S. Hosier, and W. Tittel, "Time-cost analysis of a quantum key distribution system clocked at 100 MHz," Opt. Express **19**, 17729-17737 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17729

Sort: Year | Journal | Reset

### References

- C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing , Bangalore, India, pp. 175–179 (1984).
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
- V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duek, N. Ltkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009). [CrossRef]
- B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).
- A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15, 9388 (2007). [CrossRef] [PubMed]
- L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010). [CrossRef]
- N. Jain, C. Wittman, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” arXiv : 1103.2327v2, (2011).
- K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, “Quantum key distribution system clocked at 2 GHz,” Opt. Express 13, 3015–3020 (2005). [CrossRef] [PubMed]
- Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
- A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96, 161102 (2010). [CrossRef]
- M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legre, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Langer, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” arXiv :1103.3566 (2010).
- M. Peev, C. Pacher, R. Allaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Frst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hbel, G. Humer, T. Lnger, M. Legr, R. Lieger, J. Lodewyck, T. Lornser, N. Ltkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. 11, 075001 (2009). [CrossRef]
- G. Brassard and L. Salvail, “Lecture notes in computer science,” in Advances in Cryptology EUROCRYPT ’93 (Springer, 1994), vol. 765, pp. 410–23. [CrossRef]
- D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325 (2004).
- W. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003). [CrossRef] [PubMed]
- X. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
- X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005). [CrossRef]
- M. Dǔsek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999). [CrossRef]
- G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000). [CrossRef] [PubMed]
- I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real world quantum key distribution with quantum frames,” N. J. Phys. 11, 095001 (2009). [CrossRef]
- In the current setup, the number of sifted key bits to be processed in one execution of error correction is fixed to 10 kb. The time required to collect this data is setup dependent.
- C. Healey, I. Lucio-Martinez, M. R. E. Lamont, X. F. Mo, and W. Tittel, “Characterization of an InGaAs/InP single-photon detector at 200 MHz gate rate,” in preparation.
- Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near-infrared,” Appl. Phys. Lett. 91, 041114 (2007). [CrossRef]
- A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennet, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94, 231113 (2009). [CrossRef]
- D. J. Rogers, J. C. Bienfang, A. Nakassis, H. Xu, and C. W. Clark, “Detector dead-time effects and paralyzability in high-speed quantum key distribution,” N. J. Phys. 9, 319 (2007). [CrossRef]
- R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory 8(1), 21–28 (1962). [CrossRef]
- D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett. 33(6), 457–458 (1997). [CrossRef]
- D. Pearson, “High-speed QKD reconciliation using forward error correction,” Quantum Commun. Meas. Comput. 734(1), 299–302 (2004).
- R. C. Agarwal and C. S. Burrus, “Number theoretic transforms to implement fast digital convolution,” Proc. IEEE 63(4), 550–560 (1975). [CrossRef]
- N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000). [CrossRef]
- P. Rice and J. Harrington, “Numerical analysis of decoy state quantum key distribution protocols,” arxiv :0901.0013 (2009).
- R. Y. Q. Cai and V. Scarani, “Finite-key analysis for practical implementations of quantum key distribution,” N. J. Phys. 11, 045024 (2009). [CrossRef]
- C.-H. F. Fung, X. Ma, and H.-F. Chau, “Practical issues in quantum-key-distribution processing,” Phys. Rev. A 81(1), 012318 (2010). [CrossRef]
- J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, “UMAC: fast and secure message authentication,” Advances in Cryptology CRYPTO 99 , Lecture Notes in Computer Science, 1666, 79 (1999).
- Y. Bo, R. Karri, and D. A. McGrew, “A high-speed hardware architecture for universal message authentication code,” IEEE J. Sel. Areas Commun. 24(10), 1831–1839 (2006). [CrossRef]
- B. Levine, R. Reed Taylor, and H. Schmit, “Implementation of near Shannon limit error-correcting codes using reconfigurable hardware,” IEEE Symposium on Field-Programmable Custom Computing Machines , 217–226 (2000).
- M. Fürst, H. Weier, S. Nauerth, D. G. Marangon, C. Kurtsiefer, and H. Weinfurter, “High speed optical quantum random number generator,” Opt. Express 18(12), 13029–13037 (2010). [CrossRef] [PubMed]
- Two bits are required to determine each polarization state, and four bits allow a random choice of vacuum, decoy and signal states with the desired distribution. Furthermore, some randomness is required for privacy amplification. Note that no random numbers are required at the receiver end due to the passive basis choice.
- T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.