OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 506–511
« Show journal navigation

Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization

Dong Hou, Peng Li, Cheng Liu, Jianye Zhao, and Zhigang Zhang  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 506-511 (2011)
http://dx.doi.org/10.1364/OE.19.000506


View Full Text Article

Acrobat PDF (885 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a novel technique for highly stable transfer of a frequency comb over long optical fiber link. The technique implements an electronic compensation loop to cancel out the phase fluctuations that is introduced by the fiber. We utilized this technique to transfer a stable microwave frequency through a 20 km urban fiber link and an 80 km open air fiber link respectively. For the 20 km urban fiber link, the active compensation system reduced the phase fluctuation from 75 mrad (118 ps) to 4 mrad (6.3 ps) in 48 hours, and the frequency stability was improved by three orders of magnitude. For the 80 km open air fiber link, the active compensation system reduced the rms phase fluctuation from 580 mrad (914 ps) to 10 mrad (16 ps) in 24 hours, and the frequency stability was improved by two orders of magnitude.

© 2011 OSA

1. Introduction

2. Objective and phase fluctuations compensation system

φc(t)=φf(t).
(3)

The compensation circuit carries out the phase correction according to the round-trip phase fluctuation, and delivers the correction to the electronic phase shifter for compensating the one-way phase fluctuation.

3. Experimental results and discussions

Figure 5
Fig. 5 Frequency stabilities of the distribution in open and closed loop.
shows the frequency stability of the stable distribution over the two fiber links. For the 20 km urban fiber link, the stability in the open loop is ~10−7 for a 1-s gate time and higher than 10−8 for a 1000-s (filled triangle in Fig. 5). The active phase compensation reduces it by three orders of magnitude to less than 9 × 10−10 for a 1-s gate time and three orders of magnitude to less than 10−11 at 1000-s (filled circle in Fig. 5). For the 80 km fiber link, the stability in the open loop is also ~10−7 for a 1-s gate time and a few higher than 10−9 for a 1000-s (filled diamond in Fig. 5). The active phase compensation reduces it by three orders of magnitude to 8 × 10−10 for a 1-s gate time and two orders of magnitude to less than 8 × 10−11 at 1000-s (filled cross in Fig. 5). The frequency stability for the closed loop is approaching to that of the reference signal. This shows that the compensation technique ensures the transmitted signal preserving the stability in the long-term transfer. The reference frequency stability (filled square in Fig. 5) is merely the upper bound of the stability incurred during transfer of microwave signal. Further experiment would require a more stable reference source.

4. Conclusions

Acknowledgements

This work was supported in part by the Nature Science Foundations of China (No. 60704040 and 10974006), and 973 program (2010CB328201).

References and links

1.

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008). [CrossRef]

2.

D. Kirchner, “Two-way Time Transfer via Communication Satellites,” Proc. IEEE 79(7), 983–990 (1991). [CrossRef]

3.

W. Lewandowski, J. Azoubib, and W. J. Klepczynski, “GPS: Primary tool for time transfer,” Proc. IEEE 87(1), 163–172 (1999). [CrossRef]

4.

J. Ye, J. L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L. S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20(7), 1459–1467 (2003). [CrossRef]

5.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavac, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43(1), 109–120 (2006). [CrossRef]

6.

J. Kim, J. A. Cox, J. Chen, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008). [CrossRef]

7.

L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19(21), 1777–1779 (1994). [CrossRef] [PubMed]

8.

M. Musha, F. L. Hong, K. Nakagawa, and K. Ueda, “Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network,” Opt. Express 16(21), 16459–16466 (2008). [CrossRef] [PubMed]

9.

P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25(8), 1284–1293 (2008). [CrossRef]

10.

H. Jiang, F. Kefelian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B 25(12), 2029–2035 (2008). [CrossRef]

11.

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett. 34(15), 2270–2272 (2009). [CrossRef] [PubMed]

12.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17).,” Phys. Rev. Lett. 94(20), 203904 (2005). [CrossRef] [PubMed]

13.

Y. F. Chen, J. Jiang, and D. J. Jones, “Remote distribution of a mode-locked pulse train with sub 40-as jitter,” Opt. Express 14(25), 12134–12144 (2006). [CrossRef] [PubMed]

14.

O. Lopez, A. Amy-Klein, C. Daussy, C. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2 x 10−18 for RF frequency transfer,” Eur. Phys. J. D 48(1), 35–41 (2008). [CrossRef]

15.

M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34(19), 2949–2951 (2009). [CrossRef] [PubMed]

16.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007). [CrossRef] [PubMed]

17.

A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, “Nonlinear timing jitter in an installed fiber network with balanced dispersion compensation,” IEEE Photon. Technol. Lett. 17(7), 1558–1560 (2005). [CrossRef]

18.

D. Hou, P. Li, P. Xi, J. Zhao, and Z. Zhang, “Timing jitter reduction over 20-km urban fiber by compensating harmonic phase difference of locked femtosecond comb,” Chin. Opt. Lett. 8(10), 993–995 (2010). [CrossRef]

19.

K. W. Holman, Distribution of an Ultrastable Frequency Reference Using Optical Frequency Combs (Ph. D. Thesis of University of Colorado, USA, 2005).

20.

J. Kim, J. Chen, Z. Zhang, F. N. C. Wong, F. X. Kärtner, F. Loehl, and H. Schlarb, “Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator,” Opt. Lett. 32(9), 1044–1046 (2007). [CrossRef] [PubMed]

21.

K. W. Holman, D. J. Jones, D. D. Hudson, and J. Ye, “Precise frequency transfer through a fiber network by use of 1.5-microm mode-locked sources,” Opt. Lett. 29(13), 1554–1556 (2004). [CrossRef] [PubMed]

22.

K. W. Holman, D. D. Hudson, J. Ye, and D. J. Jones, “Remote transfer of a high-stability and ultralow-jitter timing signal,” Opt. Lett. 30(10), 1225–1227 (2005). [CrossRef] [PubMed]

23.

F. Narbonneau, M. Lours, S. Bize, A. Clairon, G. Santarelli, O. Lopez, C. Daussy, A. Amy-Klein, and C. Chardonnet, “High resolution frequency standard dissemination via optical fiber metropolitan network,” Rev. Sci. Instrum. 78, 021101 (2007).

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(320.7090) Ultrafast optics : Ultrafast lasers
(350.4010) Other areas of optics : Microwaves

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 4, 2010
Revised Manuscript: October 19, 2010
Manuscript Accepted: December 14, 2010
Published: January 3, 2011

Citation
Dong Hou, Peng Li, Cheng Liu, Jianye Zhao, and Zhigang Zhang, "Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization," Opt. Express 19, 506-511 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-506


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008). [CrossRef]
  2. D. Kirchner, “Two-way Time Transfer via Communication Satellites,” Proc. IEEE 79(7), 983–990 (1991). [CrossRef]
  3. W. Lewandowski, J. Azoubib, and W. J. Klepczynski, “GPS: Primary tool for time transfer,” Proc. IEEE 87(1), 163–172 (1999). [CrossRef]
  4. J. Ye, J. L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L. S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20(7), 1459–1467 (2003). [CrossRef]
  5. A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavac, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43(1), 109–120 (2006). [CrossRef]
  6. J. Kim, J. A. Cox, J. Chen, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008). [CrossRef]
  7. L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19(21), 1777–1779 (1994). [CrossRef] [PubMed]
  8. M. Musha, F. L. Hong, K. Nakagawa, and K. Ueda, “Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network,” Opt. Express 16(21), 16459–16466 (2008). [CrossRef] [PubMed]
  9. P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25(8), 1284–1293 (2008). [CrossRef]
  10. H. Jiang, F. Kefelian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B 25(12), 2029–2035 (2008). [CrossRef]
  11. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett. 34(15), 2270–2272 (2009). [CrossRef] [PubMed]
  12. C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17).,” Phys. Rev. Lett. 94(20), 203904 (2005). [CrossRef] [PubMed]
  13. Y. F. Chen, J. Jiang, and D. J. Jones, “Remote distribution of a mode-locked pulse train with sub 40-as jitter,” Opt. Express 14(25), 12134–12144 (2006). [CrossRef] [PubMed]
  14. O. Lopez, A. Amy-Klein, C. Daussy, C. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2 x 10−18 for RF frequency transfer,” Eur. Phys. J. D 48(1), 35–41 (2008). [CrossRef]
  15. M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34(19), 2949–2951 (2009). [CrossRef] [PubMed]
  16. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007). [CrossRef] [PubMed]
  17. A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, “Nonlinear timing jitter in an installed fiber network with balanced dispersion compensation,” IEEE Photon. Technol. Lett. 17(7), 1558–1560 (2005). [CrossRef]
  18. D. Hou, P. Li, P. Xi, J. Zhao, and Z. Zhang, “Timing jitter reduction over 20-km urban fiber by compensating harmonic phase difference of locked femtosecond comb,” Chin. Opt. Lett. 8(10), 993–995 (2010). [CrossRef]
  19. K. W. Holman, Distribution of an Ultrastable Frequency Reference Using Optical Frequency Combs (Ph. D. Thesis of University of Colorado, USA, 2005).
  20. J. Kim, J. Chen, Z. Zhang, F. N. C. Wong, F. X. Kärtner, F. Loehl, and H. Schlarb, “Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator,” Opt. Lett. 32(9), 1044–1046 (2007). [CrossRef] [PubMed]
  21. K. W. Holman, D. J. Jones, D. D. Hudson, and J. Ye, “Precise frequency transfer through a fiber network by use of 1.5-microm mode-locked sources,” Opt. Lett. 29(13), 1554–1556 (2004). [CrossRef] [PubMed]
  22. K. W. Holman, D. D. Hudson, J. Ye, and D. J. Jones, “Remote transfer of a high-stability and ultralow-jitter timing signal,” Opt. Lett. 30(10), 1225–1227 (2005). [CrossRef] [PubMed]
  23. F. Narbonneau, M. Lours, S. Bize, A. Clairon, G. Santarelli, O. Lopez, C. Daussy, A. Amy-Klein, and C. Chardonnet, “High resolution frequency standard dissemination via optical fiber metropolitan network,” Rev. Sci. Instrum. 78, 021101 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited