OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 739–747
« Show journal navigation

Improved approach for ultra-sensitive detection of NO

Yixian Qian and Huijuan Sun  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 739-747 (2011)
http://dx.doi.org/10.1364/OE.19.000739


View Full Text Article

Acrobat PDF (1083 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An improved approach has been developed for ultra-sensitive detection of the concentration of NO using Faraday Modulation spectrometry (FAMOS) combined with the strong electronic transition. By changing the modulating magnetic field attributing to linear absorption and refraction of gas sample, the polarized laser was rotated and absorbed by the complex refraction index of NO. We confirm the relation between the magnitudes of absorption and the optimum modulation magnetic field. Also, the accuracy and the precision of the technique have been evaluated at different pressures. It is shown that the system is capable of detecting NO concentration down to 0.34 ppb·m.

© 2011 OSA

1. Introduction

Nitric oxide (NO) is an environmentally hazardous, reactive, and strongly toxic pollutant that contributes to ground-level ozone, causes smog and acid rain, and gives rise to direct health effects [1

1. J. H. Seinfeld, and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998), p. 1326.

,2

2. Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharm. Des. 5(6), 417–441 (1999). [PubMed]

]. It is mainly anthropogenically produced by, for example, vehicle engines, power and incineration plants, and cigarette smoke [3

3. P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128(2), 137–150 (2002). [CrossRef]

]. On the other hand, NO is also an important intermediate in the chemical industry and an essential signaling molecule that participates in many physiological and pathological processes within the mammalian body [4

4. L. J. Ignarro, “Nitric oxide. A novel signal transduction mechanism for transcellular communication,” Hypertension 16(5), 477–483 (1990). [PubMed]

]. All this makes it of importance to monitor and assess the presence of NO under various conditions. This requires, first of all, access to a detection technique with sufficient sensitivity. In addition, because gas samples from industrial processes, as well as from biological sources, e.g., combustive emissions and exhaled human breath, usually contain large amounts of water and carbon dioxide that often interfere with the detection of other constituents. This calls for a technique that allows for in situ detection of NO with a detectability in the low (or preferably also sub-) ppb·m range in the presence of significantly higher concentrations (often percentages) of concomitant species.

The NO molecule has its strongest vibrational absorption band in the mid-IR part of the spectrum at 5.2μm, whereas its first and second overtones appear in the IR region at approximately 2.65 and 1.8μm, respectively. Detection of NO at the two overtone bands therefore suffers from weak absorption cross-sections. This is manifested by the rather moderate detection limits that have been reported for detection of NO by TDLAS on the first and second overtones. For example, NO has been detected on its second overtone band by Sonnenfroh and Allen using an InGaAsP/InP DFB laser [5

5. D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997). [CrossRef]

]. Interacting with a line strength of 3.7 × 10−4 cm−2/atm, the authors reported a detectability of NO in flames of 140 ppm·m. A complementary high-resolution study of NO in this wavelength region was performed by Mihalcea et al. with a line strength of 1.3 × 10−3 cm−2/atm [6

6. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9(3), 327–338 (1998). [CrossRef]

]. Although they utilized a multipass cell with an effective length of 33m, they reported a detection limit of only 20 ppm. Detection of NO on its first overtone band (2.65μm) has been performed by Oh and Stanton using an AlGaAsSb/InGaAsSb laser [7

7. D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36(15), 3294–3297 (1997). [CrossRef] [PubMed]

]. The authors estimated the detectability of NO in air to be 30 ppm for an interaction path length of 0.5m with a line strength of 1.0 × 10−2 cm−2/atm. In recent years, there are also a few demonstrations of detection of NO on its fundamental vibrational band, using both lead salt lasers and quantum cascade (QC) lasers [8

8. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001). [CrossRef]

12

12. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004). [CrossRef] [PubMed]

]. In addition, Sonnenfroh et al., who worked with the fundamental vibrational absorption band at approximately 5.4μm, reported the detection limit (0.5 ppm·m for a S/N≈1) was just barely in the sub-ppm·m region [8

8. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001). [CrossRef]

]. Multipass detection techniques have so far only occasionally been used for detection of NO. One example is the work by Nelson et al., who utilized a multipass Herriott cell together with a QC laser working at approximately 5.26μm to demonstrate the applicability for sensitive detection of NO, which is significantly better than what the corresponding nonextractive techniques have been able to achieve [9

9. D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002). [CrossRef]

]. However, since multipass detection techniques require gas extraction, they do not have the same flexibility and versatility as conventional single pass TDLAS detection techniques and cannot be used for in situ assessments. In addition, they give rise to a longer response time and do not necessarily work well under conditions with significant amounts of particulates in the gas.

The most commonly used non-extractive technique for in situ detection of molecular species in gas phase is based upon diode laser absorption spectrometry and referred to as Tunable Diode Laser Absorption Spectrometry (TDLAS) [13

13. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998). [CrossRef]

16

16. J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005). [CrossRef]

]. It incorporates most often Wavelength Modulation Spectrometry (WMS) for reduction of noise [17

17. S. Wagner, B. Fisher, J. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32(1), 839–846 (2009). [CrossRef]

,18

18. N. Yamazoe and K. Shimanoe, “New perspectives of gas sensor technology,” Sens. Actuators B Chem. 138(1), 100–107 (2009). [CrossRef]

]. Although this technique is versatile and regularly used for detection of a variety of species [19

19. A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002). [CrossRef]

22

22. T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008). [CrossRef]

], the detectability of the technique is not sufficient for in situ detection of NO in ppb concentrations, primarily caused by a combination of low transition probabilities of the most commonly accessed overtone band in the infrared (IR) region, a lack of diode lasers producing light in the wavelength regions of these bands, and significant spectroscopic interferences, primarily with water [23

23. R. Gäbler and J. Lehmann, “Sensitive and isotope selective (14NO/15NO) online detection of nitric oxide by faraday-laser magnetic resonance spectroscopy,” Methods Enzymol. 396, 54–60 (2005). [CrossRef] [PubMed]

].

Based upon the fundamental fact that the linestrengths of electronic transitions in molecules are in general significantly larger than those of various types of vibrational transitions in the IR region [24

24. D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997). [CrossRef]

,25

25. J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb⋅m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24(9), 2294–2306 (2007). [CrossRef]

], the present work constitutes a first evaluation of the performance of a prototype instrumentation for TDLAS with Faraday Modulation Spectroscopy (FAMOS) technique at the strongest electronic transition in the X2Π(υ” = 0)-A2Σ+(υ’ = 0) band of NO at ~226.8 nm. The transition probabilities for the electronic transitions are in general not only several orders of magnitude larger than those of the various vibrational overtones that are mostly used today, they are also significantly larger than those of the fundamental vibration. Electronic transitions therefore give rise to significantly stronger absorption signals whenever they can be used. In addition, they lie in wavelength regions less affected by spectral interferences than vibrational transitions. The increased transition strengths and free interferences therefore make absorption on electronic transitions an interesting alternative for sensitive detection of NO for practical application.

2. Theory

In Faraday modulation spectrometry (FAMOS), the presence of a an absorber will give rise to at least three effects affecting the total signal; ordinary absorption of light, circular dichroism, that converts the linearly polarized light to elliptically polarized, and circular birefringence, that rotates the plane of polarization. The Faraday rotation technique is based upon the latter of these. However, it is feasible that the measured signal is affect also by the other effects [30

30. F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004). [CrossRef] [PubMed]

32

32. S. Guo, J. Boyd, R. Sammynaiken, and M. C. Loewen, “Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1,” Biochem. Cell Biol. 86(3), 262–270 (2008). [CrossRef] [PubMed]

]. The signal is proportional to the birefringence of the sample medium. Thus the signal at a given frequency υ is given by the sum of the signals for all the different M transitions that make contributions, i.e.,
S(υ)=p=±1MMpSMM(υ)
(1)
where M′ and M″ are M quantum numbers for the upper and lower states, respectively. For FAMOS configuration, p gives the selection rule on M:
p=MM=±1
(2)
SMM(υ) is the dispersion function for an individual M transition centered at a frequency υMMis given by
SMM(υ)=X(JM;JM)χ(υ,υMM,Γ)e(EJ/kT)
(3)
where χ(υ,υMM,Γ) is line shape function, Γ is the linewidth, and the exponential term is the Boltzmann population factor, X(JM;JM) is the linestrength factor, given by
XMM=SJJ(J1JMpM)2
(4)
where SJJ is integrated line intensity of the zero field transition. The line shape appropriate for this birefringence experiment is governed by the dispersion relation, or more precisely, by the frequency dependence of the real part of the complex refractive index. In case where pressure and Doppler contributions are relevant, the resulting line shape is [22

22. T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008). [CrossRef]

]
χ(υ,υMM)=1NVυτυMMγP2+(υτυMM)2e(τυMMγD/ln2)2dτ
(5)
where NV is the scaling factor. The frequency of an individual M transition is given by
υMM=υ0+(MgMg)μ0Bh
(5)
υ0 is the zero field transition frequency, g′and g″ are factors for the upper and lower states in the transition, μ0 is the Bohr magnetron, and h is the Planck’s constant.

3. Simulation

Using the simulation program, the transition frequencies, the Einstein coefficients, and the line strengths for all possible transitions in the 226.55-226.60 nm within the γ (0, 0) band region were calculated. Figure 1
Fig. 1 Simulation of an absorption spectrum in the 226.55 – 226.61 nm region of the γ(0,0) band of NO
shows the spectrum in the case when the dominating broadening mechanism is Doppler broadened. The transitions in the middle of the scan are the (partly) overlapping Q22 (10.5) and QR12 (10.5) transitions at 44135.22 cm−1 that was used for the present study.

4. Experiment and process

Here, we focus on nitric oxide detection via Faraday rotation spectroscopy with alternating magnetic fields. The experimental set up is schematically illustrated in Fig. 4
Fig. 4 Scheme of the FAMOS spectrometer developed in this work
. It consists of a fully-diode-laser-based UV laser system (UV-DLS), two nearly crossed Rochon polarizers with extinction ratio about 10−5, a 10 cm long fused silica cell with wedged windows, a UV sensitive detector, a lock-in amplifier (LIA), a magnetic field with power amplifier (PA), and a computer with a 16-bits A/D card. The system also incorporates a wavelength meter (WM) for wavelength calibration.

The UV laser system is an external cavity diode laser (ECDL) in an external grating configuration producing cw light at 907 nm. The light passes an optical isolator before it is fed into an external cavity containing a KNbO3 crystal, which produces light at approximately 453 nm. This light is fed into a second external cavity containing a BBO crystal, that in general produces light at approximately 226.6 nm UV light. The UV light was passed through a Rochon polarizer and then fed through a detection cell, which is inside a copper wire coil for the application of a magnetic field. A second Rochon polarizer behind the cell (called the analyzer) is set to the almost crossed position with a slight offset angle (φ = 12°). The transmitted light is detected by the GaP UV-enhanced photodiode (Roithner, EPD-150-0/3.6). The output voltage is sent to a lock-in amplifier for demodulation. The demodulated signal is recorded by a personal computer equipped with an A/D card and LabVIEW software.

For each experiment, using a wavemeter (Burleigh, WA-1500), the center wavelength of the laser was first tuned to the vicinity of 906.30 nm to produce UV radiation around the targeted NO transitions at 226.58 nm. The UV light was then scanned back and forth across the selected transitions by modulating the piezo crystal transducer (PZT) in the ECDL laser in saw function by a function generator at a rate of 1 Hz. The scanning range was typically 38 GHz (1.3 cm−1) in UV, which is slightly more than ten times the Doppler width of the NO transition. The magnetic field is sinusoidally modulated with a frequency of ~3 kHz. A typical value for the applied alternating magnetic field B is 1.1 × 10−2 Tesla, which is limited by the largest power of PA in our lab, which results in a periodic Zeeman shift in the order of 5.6 × 10−2 cm−1. The data acquisition rate was 6 kHz. A gas mixture of 100 ± 10 ppm NO in N2 was used at various pressures for the experiments.

5. Results and discussion

A FAMOS spectrum from the overlapping Q22 (10.5) and QR12 (10.5) lines at around 226.58 nm from 4.2 Torr of the 100 ppm NO mixture (which corresponds to a concentration path length of 55 ppb·m) is shown by the solid line in the upper panel of Fig. 5
Fig. 5 Upper panel: measured and fitted FAMOS signal for the combined Q22(10.5) and QR12(10.5)transition at around 226.577 nm for 4.2 Torr of 100 ppm of NO in N2, corresponding to a concentration of 55 ppb.m. Lower panel: the residual which the standard deviation σ of the fit coefficients corresponds to 1.8 ppb.m
. Also shown in the same panel (as the dotted line) is a fitted curve. As can be seen from the figure, there is a good agreement between the spectrum and the fit. The residual has a peak-to-peak excursion that is below 2 × 10−2, which is assumed to originate from etalon effects in the sample cell as well as random fluctuations and drifts of the laser light power. The standard deviation of the residual is 0.006 corresponding to a concentration of 1.8 ppb.m. The good fit, and the lack of structure in the residual, indicate that there is an almost complete overlap between the Q22(10.5) and QR12(10.5) lines.

In order to assess the sensitivity of the technique for detection of NO on the combined Q22 (10.5) and QR12 (10.5) transition, absorption signals were recorded for a set of pressures (from 1.3 × 10−3 to 0.197 atm, corresponding to 1 to 150 Torr) of the premixed 100 ppm NO/N2 gas mixture. Each measurement was repeated 10 times and the amplitude of the FAMOS signal was retrieved and plotted in Fig. 6
Fig. 6 Measured FAMOS spectra for a set of total pressures of the 100 ppm NO / N2 gas mixture. The various curves represent total pressures of 1, 2, 4.2, 8, 10, 20, 30, 50, 60, 69.6, 80, 90, 90, 100, 110, 118 128, and 149.5 Torr, respectively.
. As can be seen from the figure, the absorption line broadens substantially due to collision broadening (with N2) and the peak position shifts as the pressure is increased.

Figure 7
Fig. 7 A set of FAMOS signal magnitude from measurement according to different premixed 100 ppm NO in N2. The relatively large error bars originate from temperature fluctuations in the NO cell. The solid curve is a two order polynomial curve fit is obtained from the measured amplitudes and known NO concentration levels.
displays the peak-to-peak values SF of fits to the FAMOS as a function of total pressure of the premixed NO shown in Fig. 6. It is convenient to define a sensitivity of the technique, ξ, in terms of the signal magnitude per unit of partial pressure of NO, i.e., as ∂SF/∂pNO. The sensitivity of the transition is therefore given by the slope of the curve in Fig. 7. It was found, however, that the curve has a weak nonlinearity, i.e., a slightly less-than-linear dependence on pressure for high pressures (the solid curve, represents a fit of a second-order polynomial to the data). However, taking the linear part of the curve for low and intermediate pressures as a good representation of the sensitivity of the technique implies that the sensitivity for this particular pair of transitions and for this special premixed NO with 100 ppm could be assessed to 0.018V/Torr, which means the sensitivity for partial NO is 180V/Torr.

The limit of detection can conveniently be defined as the partial pressure of NO, for which the signal to noise is equal to 3. Defining the noise as the standard deviation of FAMOS signal, σN = 0.0008V, evaluated from fits to a number of empty cell measurements (each consisting of the average of 10 consecutive scans), implies that (pNO)LOD can be expressed as 3σN/ξ, where ξ is the sensitivity of the transition as defined above. An analysis of signals from measurements from an evacuated cell was therefore performed using the procedure described as Fig. 5. Such a procedure provides a standard deviation of the FAMOS signal, σN. Making use of the sensitivity of the transition from above implies that (pNO)LOD is 13.3 μTorr. This corresponds to a minimum detectable concentration of NO of 17 ppb. Using the fact that the interaction region was 10 cm, this implies that the system is capable of detecting 1.7 ppb·m NO. From simulation described above, the FAMOS signal can achieve 5 times better if takes the optimal magnetic modulation which means the limitation of detection can achieve 0.34 ppb·m.

In addition to the evaluation of the accuracy of the methodology, step concentration measurements of NO are depicted in Fig. 8
Fig. 8 NO concentration measurement from different relative concentration.
. Each measurement was repeated 10 times and the concentration (X) of NO by fitted the amplitude of FAMOS and the sensitivity described above, i.e. X = S/ξ. The particle NO concentrations were assessed using a calibration according to the procedure described as Fig. 7. The mean value of the assessed concentration in the first region was found to be 33 ppb·m, which STD is 1.28 ppb·m shows that the precision of the technique is < 3.9%. While the mean value of the assessed concentration at 578 ppb.m gives the precision of the technique is satisfactory (0.8%). It also shows that the technique is fully capable of being an in situ monitor of NO.

5. Conclusions

Detection of nitric oxide at Torr pressures of a premixed gas with 100 ppm NO in N2 has been performed on an overlapped electronic transition in γ (0, 0) band at 226.577 nm by the use of fully-diode-laser-based ultraviolet absorption spectrometry utilizing Faraday rotation modulation technique. Over an absorption path length of 10 cm, the minimum detectable partial pressure of NO was found to be 2.66 µTorr at the optimal alternating magnetic field, corresponding to a relative concentration of 3.4 ppb. This corresponds to a concentration path length of 0.34 ppb·m, which clearly indicates the large potential of UV TLDAS for in situ detection of NO. The detectability of the FAMOS spectrometer in terms of gas concentration can be swiftly improved using a longer absorption path-length.

Acknowledgments

This work is supported by the Natural Science Foundation of China (NO.60702078) and Zhejiang province Science and Technology Foundation (NO.2010C33162).

References and links

1.

J. H. Seinfeld, and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998), p. 1326.

2.

Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharm. Des. 5(6), 417–441 (1999). [PubMed]

3.

P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128(2), 137–150 (2002). [CrossRef]

4.

L. J. Ignarro, “Nitric oxide. A novel signal transduction mechanism for transcellular communication,” Hypertension 16(5), 477–483 (1990). [PubMed]

5.

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997). [CrossRef]

6.

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9(3), 327–338 (1998). [CrossRef]

7.

D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36(15), 3294–3297 (1997). [CrossRef] [PubMed]

8.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001). [CrossRef]

9.

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002). [CrossRef]

10.

S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson Jr, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004). [CrossRef] [PubMed]

11.

P. K. Falcone, R. K. Hansson, and C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35(1), 81–99 (1983). [CrossRef]

12.

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004). [CrossRef] [PubMed]

13.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998). [CrossRef]

14.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002). [CrossRef]

15.

A. Y. S. Cheng and M. H. Chan, “Acousto-optic differential optical absorption spectroscopy for atmospheric measurement of nitrogen dioxide in Hong Kong,” Appl. Spectrosc. 58(12), 1462–1468 (2004). [CrossRef] [PubMed]

16.

J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005). [CrossRef]

17.

S. Wagner, B. Fisher, J. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32(1), 839–846 (2009). [CrossRef]

18.

N. Yamazoe and K. Shimanoe, “New perspectives of gas sensor technology,” Sens. Actuators B Chem. 138(1), 100–107 (2009). [CrossRef]

19.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002). [CrossRef]

20.

L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).

21.

J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006). [CrossRef]

22.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008). [CrossRef]

23.

R. Gäbler and J. Lehmann, “Sensitive and isotope selective (14NO/15NO) online detection of nitric oxide by faraday-laser magnetic resonance spectroscopy,” Methods Enzymol. 396, 54–60 (2005). [CrossRef] [PubMed]

24.

D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997). [CrossRef]

25.

J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb⋅m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24(9), 2294–2306 (2007). [CrossRef]

26.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72(12), 6602 (1980). [CrossRef]

27.

W. Bohle, J. Werner, D. Zeitz, A. Hinz, and W. Urban, “Vibration-rotation spectroscopy of open shell molecular ions,” Mol. Phys. 58(1), 85–95 (1986). [CrossRef]

28.

P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999). [PubMed]

29.

H. Ganser, W. Urban, and A. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101(4), 545–550 (2003). [CrossRef]

30.

F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004). [CrossRef] [PubMed]

31.

T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006). [CrossRef]

32.

S. Guo, J. Boyd, R. Sammynaiken, and M. C. Loewen, “Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1,” Biochem. Cell Biol. 86(3), 262–270 (2008). [CrossRef] [PubMed]

33.

D. W. Robinson, “Magnetic rotation spectrum of A2Σ+←X2Π transition in NO II,” J. Chem. Phys. 50(11), 5018 (1969). [CrossRef]

34.

K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10 T,” J. Chem. Phys. 110(19), 9492–9499 (1999). [CrossRef]

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Spectroscopy

History
Original Manuscript: November 8, 2010
Revised Manuscript: December 16, 2010
Manuscript Accepted: December 17, 2010
Published: January 5, 2011

Citation
Yixian Qian and Huijuan Sun, "Improved approach for ultra-sensitive detection of NO," Opt. Express 19, 739-747 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-739


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Seinfeld, and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998), p. 1326.
  2. Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharm. Des. 5(6), 417–441 (1999). [PubMed]
  3. P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128(2), 137–150 (2002). [CrossRef]
  4. L. J. Ignarro, “Nitric oxide. A novel signal transduction mechanism for transcellular communication,” Hypertension 16(5), 477–483 (1990). [PubMed]
  5. D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997). [CrossRef]
  6. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9(3), 327–338 (1998). [CrossRef]
  7. D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36(15), 3294–3297 (1997). [CrossRef] [PubMed]
  8. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001). [CrossRef]
  9. D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002). [CrossRef]
  10. S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004). [CrossRef] [PubMed]
  11. P. K. Falcone, R. K. Hansson, and C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35(1), 81–99 (1983). [CrossRef]
  12. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004). [CrossRef] [PubMed]
  13. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998). [CrossRef]
  14. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002). [CrossRef]
  15. A. Y. S. Cheng and M. H. Chan, “Acousto-optic differential optical absorption spectroscopy for atmospheric measurement of nitrogen dioxide in Hong Kong,” Appl. Spectrosc. 58(12), 1462–1468 (2004). [CrossRef] [PubMed]
  16. J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005). [CrossRef]
  17. S. Wagner, B. Fisher, J. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32(1), 839–846 (2009). [CrossRef]
  18. N. Yamazoe and K. Shimanoe, “New perspectives of gas sensor technology,” Sens. Actuators B Chem. 138(1), 100–107 (2009). [CrossRef]
  19. A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002). [CrossRef]
  20. L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).
  21. J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006). [CrossRef]
  22. T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008). [CrossRef]
  23. R. Gäbler and J. Lehmann, “Sensitive and isotope selective (14NO/15NO) online detection of nitric oxide by faraday-laser magnetic resonance spectroscopy,” Methods Enzymol. 396, 54–60 (2005). [CrossRef] [PubMed]
  24. D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997). [CrossRef]
  25. J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb⋅m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24(9), 2294–2306 (2007). [CrossRef]
  26. G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72(12), 6602 (1980). [CrossRef]
  27. W. Bohle, J. Werner, D. Zeitz, A. Hinz, and W. Urban, “Vibration-rotation spectroscopy of open shell molecular ions,” Mol. Phys. 58(1), 85–95 (1986). [CrossRef]
  28. P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999). [PubMed]
  29. H. Ganser, W. Urban, and A. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101(4), 545–550 (2003). [CrossRef]
  30. F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004). [CrossRef] [PubMed]
  31. T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006). [CrossRef]
  32. S. Guo, J. Boyd, R. Sammynaiken, and M. C. Loewen, “Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1,” Biochem. Cell Biol. 86(3), 262–270 (2008). [CrossRef] [PubMed]
  33. D. W. Robinson, “Magnetic rotation spectrum of A2Σ+←X2Π transition in NO II,” J. Chem. Phys. 50(11), 5018 (1969). [CrossRef]
  34. K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10 T,” J. Chem. Phys. 110(19), 9492–9499 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited