OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 19845–19854
« Show journal navigation

Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile

Yair Peled, Avi Motil, Lior Yaron, and Moshe Tur  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 19845-19854 (2011)
http://dx.doi.org/10.1364/OE.19.019845


View Full Text Article

Acrobat PDF (1291 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel method, based on stimulated Brillouin scattering (SBS), for the simultaneous distributed measurement of fast strain variations along the entire length of the sensing fiber. A specially synthesized and adaptable probe wave is used to place the Brillouin interaction always on the slope of the local Brillouin gain spectrum, allowing a single pump pulse to sample fast strain variations along the full length of a fiber with an arbitrary distribution of the Brillouin frequency shift. In this early demonstration of the method, strain vibrations of a few hundred Hz are demonstrated, simultaneously measured on two different sections of an 85m long fiber, having different static Brillouin shifts and with a spatial resolution of 1.5m.

© 2011 OSA

1. Introduction

It turns out, though, that a small modification of the classical BOTDA setup can achieve very fast sensing, albeit with a limited dynamic range. Using the BOCDA technique and working at a fixed pump-probe frequency difference on the slope of the Brillouin gain spectrum (BGS), Hotate and Ong [12

12. K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002). [CrossRef]

] have measured 50Hz vibrations at 2kHz sampling rate (single fiber location). More recently, by tuning the probe frequency to the center of the rising/falling slopes of the Brillouin gain spectrum (BGS), Romeo et al. [13

13. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009). [CrossRef] [PubMed]

] utilized the SBS interaction between two counter-propagating pump and probe pulses, meeting at a selected spatial location, to demonstrate fast strain-induced variations of the intensity of amplified probe wave with a sampling rate of 200Hz. The interrogated location was determined by the relative delay between the counter-propagating pulses. Clearly, at each interrogated location the optical frequency of the probe must be adjusted to properly sit at (or near) the center of the slope of the local BGS, whose peak is likely to vary along the sensing fiber according to the local average strain/temperature and/or fiber properties.

In this paper we propose a new method for fast and distributed Brillouin sensing, where the BFS of the optical fiber may vary arbitrarily along the fiber length. The method is based on the classical BOTDA technique, with the following modifications: instead of using a CW probe wave and a swept frequency pump pulse, it uses a pump pulse of a fixed optical frequency and a variable optical frequency CW probe wave. The time evolution of the probe frequency is designed in such a way that when the probe wave meets the counter-propagating pump pulse at location zalong the fiber, the optical frequency difference between these two waves sits as close as possible to the middle of the slope of the BGS, as in [12

12. K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002). [CrossRef]

]. Any fast change in the local strain or temperature will shift the BGS, and consequently, will be translated to gain variations of the probe wave. Using this technique the whole length of the fiber can be interrogated with a single pulse, or a few if averaging is required. Sec. 2 details the proposed method, first sketched in [14

14. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011). [CrossRef]

], while Sec. 3 describes the experimental setup and some results. We demonstrate the measurement of fast (400Hz) strain vibrations along 85m of a longitudinally Brillouin-inhomogeneous fiber, with a spatial resolution of 1.5m.

2. Method

For an optical fiber in a real environment, the BFS, νB, as a function of both time and location along the fiber, can be described by:
νB(t,z)=ν¯B(z)+ΔνB(t,z)
(1)
where ν¯B(z) and ΔνB(t,z), respectively, denote its static and dynamic components. By ‘static’ we mean a temporally slow enough change that can be easily monitored by classical BOTDA. Since this static (or averaged, in case of fast strain/temperature changes) BFS has a non-uniform spatial distribution along the fiber length, we first employ classical BOTDA (with a fixed pump frequency and swept probe frequency) to plot the static Brillouin Gain Spectrum (BGS), as a function of both the fiber length coordinate zand the frequency difference between the pump and probe waves. An example appears in Fig. 1
Fig. 1 An example of the Brillouin gain spectrum (BGS) distance-frequency distribution along a sensing fiber, having 3 different BGS sections with three different static −3dB frequency values, ν¯B,3dB(z), of 10.9, 10.95 and 10.85GHz, respectively, see inset.
, showing a fiber comprising three uniform sections, each with a different BFS. Searching for the −3dB contour along the fiber (say on the falling slope of the BGS), we deduce the range dependence of ν¯B,3dB(z), see inset in Fig. 2
Fig. 2 An example of a pump pulse, propagating against a complex probe wave, which comprises 3 different optical frequencies, corresponding to the fiber of Fig. 1. Note that each probe segment has twice the length of the corresponding fiber section, as per Eq. (5).
. Here, z=0is the point where the pump pulse enters the fiber, while z=L denotes the fiber end, which is also the entrance point for the probe wave. We then temporally tailor the frequency of the probe waveform so that when the pump pulse arrives at fiber location z, it meets a probe wave, whose optical frequency is exactly ν¯B,3dB(z) below the pump frequency, ensuring Brillouin interaction around the −3dB gain point of the BGS at location z.

To satisfy the requirements of the proposed method, we now consider a probe, having the following waveform:
EProbe(t)=A0exp{j[2πνPumptϕ(t)]},
(2)
where νPump is the optical frequency of the pump, ϕ(t)is defined by
ϕ(t)=2π0tν¯B,3dB(Vgt'/2)dt',
(3)
and Vg is the fiber group velocity. (t=0 is chosen to be the time when the probe wave enters the fiber at z=L).

The propagation of the probe waveform through the fiber at t0 and 0zL obeys:

EProbe(t,z)=A0exp{j[2πνPump(t[zL]/Vg)ϕ(t[zL]/Vg)]},t[Lz]/Vg,
(4)

Therefore, the instantaneous frequency at {t,z|t[Lz]/Vg} is:

νProbe(t,z)=νPumpdϕdt=νPumpν¯B,3dB(Vg(t+[zL]/Vg)/2)=νPumpν¯B,3dB([Vgt+zL]/2)
(5)

Thus, at t=0 the probe enters the fiber at z=L with νProbe=νPumpν¯B,3dB(0), and it is not until t=L/Vg that the probe waveform arrives at z=0, still having the frequency νProbe=νPumpν¯B,3dB(0). At that instant (t=L/Vg), a pump pulse,
EPump(t)=A(t)exp{j[2πνPumpt]},
(6)
whose amplitude, A(t), defined as centered at t=0, is launched at the fiber entrance, z=0. Its propagation through the fiber is governed by:

EPump(t,z)=A(t[z+L]/Vg)exp{j[2πνPump(t[z+L]/Vg)]}
(7)

An arbitrary fiber section at z=z0, characterized by its own BFS, ν¯B,3dB(z0), is reached by the pump pulse at t0=[z0+L]/Vg. At these values of t0 and z0 the probe waveform has a frequency of (Eq. (5)):
νProbe(t0,z0)=νPumpν¯B,3dB([Vg[z0+L]/Vg+z0L]/2)=νPumpν¯B,3dB(z0)
(8)
which is the probe frequency ensuring mid-slope gain for the probe.

Figure 2 describes the temporal evolution of the probe waveform tailored for the fiber of Fig. 1, as well as spatial snapshots of the probe and pump waves, counter-propagating through the fiber. Clearly, the waveform comprises 3 segments, each with its designed optical frequency. As dictated by the form of Eq. (5), each probe segment has twice the length of the corresponding fiber section.

Dynamic strain changes at z=z0, spectrally shift the local BGS to lower or higher frequencies around its average value, ν¯B,3dB(z0) (e.g., by 50MHz/1000µS for standard single mode fibers at 1550nm [15

15. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time-domain reflectometry,” Opt. Lett. 20(5), 507–509 (1995). [CrossRef] [PubMed]

]). Thus, while meeting the pump pulse at z=z0 and t=t0, where t0=[z0+L]/Vg, the probe at frequency νProbe=νPumpν¯B,3dB(z0) will no longer experience the −3dB Brillouin gain; instead the gain will be lower or higher, depending on the direction of the BGS shift. Accordingly, the recorded probe intensity, arriving at the fiber edge (z=0) at t=[2z0+L]/Vgwill reflect this gain change, which was induced by the strain at {t=t0,z=z0}. The magnitude of the strain-to-gain conversion factor depends not only on the strain-to-frequency sensitivity but also on the slope of the previously measured Lorentian-shaped BGS. As mentioned above, this linewidth is around 30MHz for standard single mode fibers at 1550nm, provided the pump pulse width significantly exceeds the acoustic life time (~10ns). Unless special coding of the pump wave is employed [2

2. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007). [CrossRef]

,4

4. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010). [CrossRef]

], a shorter pump pulse gives rise to a broadened BGS, resulting in a more gradual slope.

While this proposed technique enables a very fast true distributed sensing over a fiber with an arbitrary distribution of its static Brillouin shift, its dynamic range for dynamic strain measurements is limited. To ensure linearity of the strain-to-gain conversion, the dynamic strain variations to be measured must be constrained to generate frequency shifts (of the BGS) smaller than the frequency span of the linear part of the BGS slope (<30MHz for long pump pulses). Using the 50MHz/1000µS strain-to-frequency conversion factor, the resulting dynamic range is ~600μє [13

13. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009). [CrossRef] [PubMed]

]. Using short pump pulses to broaden the BGS [16

16. X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24(8), 510–512 (1999). [CrossRef] [PubMed]

] will benefit the dynamic range at the expense of smaller strain-to-gain conversion factor.

Finally, slow temporal variations of ν¯B,3dB(z) can be followed either by evaluating the average of the strain fluctuations coming from distance z, or by intermittent application of classical BOTDA. Using the updated value for ν¯B,3dB(z), the frequency composition of the probe waveform can be appropriately readjusted using Eqs. (2-3).

3. Experiment and results

A highly coherent 1550nm DFB laser diode (DFB-LD), with a linewidth of 10kHz, is split into pump and probe channels, Fig. 3
Fig. 3 Experimental setup: AWG: arbitrary waveform generator, EOM: electro-optic modulator, EDFA: Erbium-doped fiber amplifier, CIR: circulator, FBG: fiber Bragg grating, PS: polarization scrambler, IS: isolator, ATT: attenuator, FUT: fiber under test, PD: photodiode.
. A complex waveform, to be described below, feeds the probe channel Mach-Zehnder modulator (EOM1), which is biased at its zero transmission point to generate two sidebands, the lower one for the probe wave and the upper one to be discarded later by the fiber Bragg grating (FBG) filter. The EOM1 output is then amplified by an Erbium doped fiber amplifier (EDFA1), optionally scrambled by a polarization scrambler (PS), and launched into one side of the fiber under test (FUT), Fig. 4
Fig. 4 The 85m FUT, comprising five sections of SMF fiber. The two 1m sections are mounted on manually stretching stages, making it possible to adjust their static Brillouin frequency shifts. Additionally, audio speakers are physically attached to these two sections in order to induce fast strain variations of various frequencies and magnitudes. All sections, with the exception of the two patch cords are made of the same fiber.
, through the attenuator (ATT). Modulator EOM2 forms the pump pulse, which is then amplified by EDFA2 and launched into the other side of the FUT through a circulator (CIR1). The Brillouin-amplified probe wave is finally routed to a fast photodiode (PD) by CIR1 and CIR2. A narrow bandwidth fiber Bragg grating (FBG) filters out pump backscattering, as well as the upper sideband generated by EOM1. Finally, the output of the photodiode is sampled at 1GSamples/s by a real-time oscilloscope with deep memory.

Here ν¯B,3dB(z)is a staircase function, representing the mid-slope frequency in each of the FUT sections. Since ν¯B,3dB(z) is on the order of 11GHz, it is not easy to directly synthesize the probe waveform of Eqs. (2-3). Instead, a dual channel, 500MHz arbitrary waveform generator (AWG), together with a 0-20GHz microwave vector signal generator with I/Q inputs, are used to generate the RF input to EOM1. Thus, the signal generator frequency, fc, is set to a fixed value around, but below min[ν¯B,3dB(z)] (~11GHz), and we rewrite Eq. (3) as:
ϕ(t)=2π0tν¯B,3dB(Vgt'/2)dt'=2πfct+2π0t(ν¯B,3dB(Vgt'/2)fc)dt'
(9)
and denote the second term on the right-hand side of (9) by ϕAWG(t). Using this technique, the 2πfctterm in (9) takes care of a fixed but high frequency component of ϕ(t), while ϕAWG(t)is responsible for the variable part of ν¯B,3dB(z). Now the two channels of the AWG, VI(t) and VQ(t)are programmed to output:

VI(t)=V0cos[ϕAWG(t)];VQ(t)=V0sin[ϕAWG(t)]
(10)

These two signals of Eq. (10) are then connected to the I/Q inputs of the vector signal generator, whose output becomes:

VRF(t)=VI(t)cos(2πfct)VQ(t)sin(2πfct)=V0cos(2πfct+ϕAWG(t))=V0cos(ϕ(t))=V0cos[2π0tν¯B,3dB(Vgt'/2)dt']
(11)

Biased at zero transmission, the EOM1 Mach-Zehnder modulator stops the pump frequency and using VRF(t) of Eq. (11), generates a lower sideband of the form
EProbe(t)=EEOM1(t)exp[j(2πνPumpt2πtν¯B,3dB(Vgt'/2)dt')],
(12)
which is exactly the desired complex probe wave, as defined by Eqs. (2-3).

In all experiments reported below, 15ns wide pump pulses were used at a repetition rate of 625kHz. Once the pump pulse enters the 85m fiber, we need to collect data for 850ns (=85mVg/2) in order to monitor the full length of the fiber. Therefore, each pump pulse generates 850 (= 1GHz·850ns) recorded samples of the intensity of the Brillouin-amplified probe wave, as measured at z=0. The sampled data were arranged in a matrix of N rows by M columns, where M=850 is the number of oscilloscope samples per pump pulse, and N is the number of pump pulse cycles used in the measurement. To maximize the frequency resolution of the measured strain variations, data were continuously collected until the scope memory was effectively exhausted, resulting in N =31,250 and a total recording time of 50ms (=N/625kHz), and, consequently, an expected frequency resolution of 20Hz. Thus, each column of the data matrix represents the time evolution of the strain at a particular location along the FUT, where the first and last columns, respectively report the gain at the beginning (z=0) and end (z=L) of the FUT.

To demonstrate fast Brillouin sensing over a Brillouin non-uniform fiber, the two 1m sections, I and II of Fig. 4, were stretched to different strains, resulting in the Brillouin distance-frequency distribution of Figs. 6-7, as determined by a classical BOTDA measurement using the same 15ns pump pulse. Clearly, the Brillouin frequency shifts for sections I and II and for the 4m section between them are 10.9, 11.02, and 10.84GHz, respectively. Ignoring the non-vibrating 4m section, we chose to work on the falling slope of section I, ν¯B,3dB(I)=10.93GHz and on the rising slope of section II, ν¯B,3dB(II)=10.99GHz (Note that working on the negative slope results in signal inversion of the measured data).

In order to measure both sections with a single pump pulse, while ignoring the rest of the fiber, a composite probe waveform was synthesized, comprising a long segment, having an optical frequency falling outside the BGS of all sections of Fig. 6, followed by a 50ns segment, downshifted from the pump by 10.93GHz for section I, and another 50ns segment, downshifted by 10.99GHz for section II. The pump pulse and the probe waveform were temporally synchronized so that the center of the pump pulse meets the probe frequency change (from 10.93GHz to 10.99GHz) at the middle of the 4m section of Fig. 4. This synchronization ensures that in the absence of vibrations, the pump pulse, propagating in either section I or II, exclusively see the exact −3dB probe frequency of that section. Note that had we strictly followed the recipe of the method (section 2 above) for the 1m-4m-1m sections, the probe waveform would have had comprised of the following segments: 10ns(10.93GHz)-40ns(10.87GHz)-10ns(10.99GHz) (assuming we work on the falling slope of the BGS of the 4m section). Instead, in this first demonstration of the method, we opted to concentrate on the two 1m vibrating sections and ignore the 4m section, as well as all other loose sections Still, for a theoretical zero-width pump pulse, this could be accomplished by a 30ns(10.93GHz)-30ns(10.99GHz) probe, which provides proper coverage for the 1m-4m-1m sections. However, to maximize the interaction of our finite-width, 15ns pump pulse (~20ns at its base) with the probe, we chose the longer 50ns (10.93GHz)-50ns (10.99GHz) probe segments.

Applying 180Hz to section I and 320Hz to section II, we obtained the results shown in Fig. 8
Fig. 8 Top: Strain-induced gain vibrations at 180Hz and 320Hz were measured at the two 1m fiber sections, having different BGS. Bottom: Time sequences from two columns of the measured data matrix, corresponding to the centers of the first and second sections, after 1kHz low pass filtering. Here too, gain variations were converted to frequency values. Like in Fig. 5, the difference in magnitude between the 180Hz and 320Hz vibrations is due to different excitation conditions.
, clearly confirming the feasibility of this new technique. The bump at the center of the 4m section (distance coordinate: 79m) is an artifact originating from the interaction of the pump pulse with the frequency transition of the probe wave from 10.93GHz to 10.99GHz that occurs exactly at that point, as dictated by our synchronization. This fast transition contains frequency components in the vicinity of the BGS of the 4m section, resulting in the observed bump, which, as expected, shows no vibrations. Luckily, in a real-world scenario, sharp transitions of the BGS are not expected, except where two different types of fiber are spliced together.

4. Discussion and summary

In this paper we proposed and demonstrated a novel method for SBS-based high-frequency distributed strain measurement for a fiber whose Brillouin frequency shift varies along its length. Since no frequency sweeping of either the pump or the probe is required, the upper limit on the measurement speed is set by the pump pulse repetition rate, as determined by the fiber length and the number of required averages. Operating on the slope of the BGS [13

13. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009). [CrossRef] [PubMed]

], the dynamic range of the allowable vibrations is limited by the frequency extent of this slope (~30MHz for not-too-short pump pulses), and can be effectively enlarged by employing pump pulses shorter than the acoustic life time [4

4. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010). [CrossRef]

]. The probe waveform can be adaptively modified to follow slowly changing static strain/temperature conditions. The proposed method is fully compatible with modern techniques for the enhancement of spatial resolution [2

2. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007). [CrossRef]

4

4. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010). [CrossRef]

]. Further research is underway to study the various characteristics of the technique, as well as its performance in real-world scenarios.

Acknowledgements

This research was supported in part by the Israel Science Foundation.

References and links

1.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997). [CrossRef]

2.

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007). [CrossRef]

3.

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008). [CrossRef] [PubMed]

4.

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010). [CrossRef]

5.

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006). [CrossRef] [PubMed]

6.

Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007). [CrossRef]

7.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011). [CrossRef] [PubMed]

8.

L. Thévenaz, “Inelastic Scatterings and Applications to Distributed Sensing” in Advanced Fiber Optics - Concepts and Technology, Thévenaz L. ed, (Lausanne, Switzerland: EPFL Press, 2011).

9.

Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system,” Opt. Express 16(14), 10240–10247 (2008). [CrossRef] [PubMed]

10.

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008). [CrossRef] [PubMed]

11.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

12.

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002). [CrossRef]

13.

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009). [CrossRef] [PubMed]

14.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011). [CrossRef]

15.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time-domain reflectometry,” Opt. Lett. 20(5), 507–509 (1995). [CrossRef] [PubMed]

16.

X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24(8), 510–512 (1999). [CrossRef] [PubMed]

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(190.0190) Nonlinear optics : Nonlinear optics
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Sensors

History
Original Manuscript: July 21, 2011
Revised Manuscript: August 30, 2011
Manuscript Accepted: August 30, 2011
Published: September 26, 2011

Citation
Yair Peled, Avi Motil, Lior Yaron, and Moshe Tur, "Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile," Opt. Express 19, 19845-19854 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-19845


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol.15(10), 1842–1851 (1997). [CrossRef]
  2. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol.25(1), 381–386 (2007). [CrossRef]
  3. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008). [CrossRef] [PubMed]
  4. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech.28(20), 2993–3003 (2010). [CrossRef]
  5. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett.31(17), 2526–2528 (2006). [CrossRef] [PubMed]
  6. Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007). [CrossRef]
  7. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett.36(11), 2062–2064 (2011). [CrossRef] [PubMed]
  8. L. Thévenaz, “Inelastic Scatterings and Applications to Distributed Sensing” in Advanced Fiber Optics - Concepts and Technology, Thévenaz L. ed, (Lausanne, Switzerland: EPFL Press, 2011).
  9. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system,” Opt. Express16(14), 10240–10247 (2008). [CrossRef] [PubMed]
  10. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express16(26), 21692–21707 (2008). [CrossRef] [PubMed]
  11. A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol.29, 1729–1735 (2011).
  12. K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE4920, 299–310 (2002). [CrossRef]
  13. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett.34(17), 2613–2615 (2009). [CrossRef] [PubMed]
  14. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE7753, 775323, 775323-4 (2011). [CrossRef]
  15. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time-domain reflectometry,” Opt. Lett.20(5), 507–509 (1995). [CrossRef] [PubMed]
  16. X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett.24(8), 510–512 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited