## Efficient and low-noise single-photon avalanche photodiode for 1.244-GHz clocked quantum key distribution |

Optics Express, Vol. 19, Issue 21, pp. 20531-20541 (2011)

http://dx.doi.org/10.1364/OE.19.020531

Acrobat PDF (1024 KB)

### Abstract

An efficient and low-noise 1.244-GHz gating InGaAs single-photon avalanche photodiode (SAPD) was developed for a high-speed quantum key distribution (QKD) system. An afterpulsing probability of 0.61% and a dark count probability per gate of 0.71 ×10^{−6} were obtained at a detection efficiency of 10.9% for 1.55-µm photons. Furthermore, our SAPD successfully coped with high detection efficiency (≤ 25%) and quite low afterpulsing noise (≤ 3% for ≤ 25% efficiency) at the same time. Its potential was verified using the actual QKD setups installed over a metropolitan area network.

© 2011 OSA

## 1. Introduction

8. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. **92**(20), 201104 (2008). [CrossRef]

11. N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express **19**(11), 10632–10639 (2011). [CrossRef] [PubMed]

9. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express **16**(23), 18790–18797 (2008). [CrossRef] [PubMed]

12. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. **91**(4), 041114 (2007). [CrossRef]

18. A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Goltsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors,” Appl. Phys. Lett. **84**(26), 5338–5340 (2004). [CrossRef]

19. S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. **35**(13), 2133–2135 (2010). [CrossRef] [PubMed]

19. S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. **35**(13), 2133–2135 (2010). [CrossRef] [PubMed]

7. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express **19**(11), 10387–10409 (2011). [CrossRef] [PubMed]

7. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express **19**(11), 10387–10409 (2011). [CrossRef] [PubMed]

## 2. Experimental setup

21. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. **35**(12), 1956–1976 (1996). [CrossRef] [PubMed]

## 3. Performance evaluation through time-resolved measurement

*P*, and AP probability

_{d}*P*of the SAPD were evaluated as a function of applied bias voltages with the time-resolved measurement as shown in Ref [12

_{a}12. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. **91**(4), 041114 (2007). [CrossRef]

13. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express **17**(8), 6275–6282 (2009). [CrossRef] [PubMed]

*P*,

_{d}*P*, and η, we counted the number of events per second in each gate period ≈800 ps in Fig. 2. Then we obtained the count rates per gate at the illuminated and non-illuminated gates,

_{a}*C*and

_{I}*C*, as well as the dark count rate per gate

_{NI}*C*when the light was blocked. We evaluated the AP probability

_{D}*P*according to Refs [12

_{a}12. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. **91**(4), 041114 (2007). [CrossRef]

13. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express **17**(8), 6275–6282 (2009). [CrossRef] [PubMed]

*R*is the number of gates during one period of the laser pulse, which was 2

^{7}= 128 in the present case. We investigated more than 50 devices. Figure 4 shows a map of measured (

*P*,

_{d}*P*) for devices operating at η ~10%. The data are scattered in the ranges from 0.1 × 10

_{a}^{−6}to 50 × 10

^{−6}for

*P*and from 0.6 to 9% for

_{d}*P*. For comparison, Table 1 lists the performance of GHz-gated InGaAs SAPDs. Note that almost all the data are located within the same ranges. This result indicates that the quality of the current SAPD is not well controlled. Figure 5 shows the

_{a}*P*and

_{d}*P*as functions of η for two devices that have the smallest and second smallest

_{a}*P*at η ~10%. A

_{a}*P*value in the order of 10

_{d}^{−7}- 10

^{−5}was obtained for η of 2– 25%. In particular,

*P*~0.61% (and

_{a}*P*~0.71 × 10

_{d}^{−6}) was obtained for η ~10.9% for a 1.55-um photons. It should be noted that in comparison with the previously reported SAPDs, the AP noise of our SAPDs is notably reduced even for η much larger than 10%. For example,

*P*was about 7% for η ~25% in Ref [15

_{a}15. Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. **96**(7), 071101 (2010). [CrossRef]

*P*values were much higher than 3% for a similar value of η. Therefore, our SAPD achieves low noise and high efficiency simultaneously, which has been difficult to achieve previously.

_{a}*P*in Eq. (1) is based on the tacit presupposition that the detection rate of AP noise, i.e.,

_{a}*C*−

_{NI}*C*, should be proportionate to the detection rate of real photon, i.e.,

_{D}*C*−

_{I}*C*. This is because the former is generated by reemission of the trapped carriers in defects generated by the latter. To confirm this presupposition, we evaluated

_{NI}*C*−

_{I}*C*and

_{NI}*P*for devices operating at η ~10% as a function of the average number μ of photons in the incident pulses. Figure 6 plots the results showing that

_{a}*P*was almost independent of μ while

_{a}*C*−

_{I}*C*was almost proportional to μ. This indicates that

_{NI}*C*−

_{NI}*C*was almost proportional to

_{D}*C*−

_{I}*C*, which confirms the above presupposition.

_{NI}## 4. Screening the SAPDs

*C*and

_{null}*C*. After sifting the keys, half of the null detection events are erroneous and contribute to the QBER, while ideally none of the true events contribute to the QBER. Thus, we may estimate the lower bound (LB) of QBER by

_{true}*C*with the count rate at all of the non-illuminated gates;

_{null}*C*→

_{null}*RC*and

_{NI}*C*with the photon count rate at the illuminated gate;

_{true}*C*→

_{true}*C*−

_{I}*C*evaluated in chapter 3. Thus, we identify

_{D}*P*≪

_{a}*R*, it follows that

*C*,

_{I}*C*, and

_{NI}*C*. Table 2 lists the typical values obtained in the measurement. From this table, we find

_{D}*C*−

_{I}*C*≫

_{D}*RC*and obtainwhere ω

_{NI}_{g}is the gate frequency.

*P*does not, as shown in Fig. 6. When the photon count rate is low enough that

_{a}*P*≪ω

_{a}_{g}

*P*/

_{d}*C*is satisfied, the contribution from the DC is predominant. On the contrary, when the photon count rate is high enough that

_{I}*P*≫ω

_{a}_{g}

*P*/

_{d}*C*is satisfied, AP noise is predominant and

_{I}*QBER*approaches

_{LB}*P*/2.

_{a}*QBER*= 2 and 1%, respectively, together with the measurement results of (

_{LB}*P*,

_{d}*P*) for our devices. Here, broken, dash-dotted, and dash-two-dotted lines indicate those plots when the photon count rate at the illuminated gate was assumed to be

_{a}*C*−

_{I}*C*≈

_{D}*C*= 15, 150 kc/s, and 1 Mc/s, respectively. Note that, for our actual QKD setups (see later), the corresponding sifted key rates are 30, 300 kbps, and 2 Mbps, respectively. These plots give the criteria in screening the SAPDs that should satisfy an arbitrary requirement on the system QBER. For example, suppose that we require

_{I}*QBER*≤ 2% for

_{LB}*C*−

_{I}*C*≈

_{D}*C*= 150 kc/s when our device is used in a QKD system. Then, the devices with the measured (

_{I}*P*,

_{d}*P*) ranging in the lower left-hand area of the associated plot, i.e., the dash-dotted curve in the upper trace, should satisfy this requirement.

_{a}*P*has a significant impact on improving the QBER. On the contrary, when the photon count rate is high, we can select SAPDs having similar

_{d}*P*values but not a very small

_{a}*P*without increasing the system QBER significantly. We should note that because the photon count rate depends on the parameters of the optical link in the installation conditions, such as length and loss in the fiber, the screening process also depends on those parameters. Therefore, it is important to find out those parameters before the installation in order to screen the useful SAPDs.

_{d}## 5. Performance evaluation using actual QKD setup

22. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. **94**(23), 230503 (2005). [CrossRef] [PubMed]

23. H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. **94**(23), 230504 (2005). [CrossRef] [PubMed]

24. Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. **55**(12), 1953–1970 (2008). [CrossRef]

*n*of the system to the AP noise as

*P*is the AP probability measured by the time-resolved measurement. We calculated

_{a}*QBER*expected for a given detection efficiency η by using Eq. (5) and replacing

_{LB}*P*and

_{a}*P*are the values expected for η from the time-resolved measurement (Fig. 5),

_{d}*C*is the value associated with η observed during the QKD experiment, and

_{I}*n*is a free adjustable parameter depending on the hold-off period. We introduced another free adjustable parameter to incorporate a constant additional contribution to the QBER due to noise sources other than the detector noise. We obtained the fitted curve of QBER shown by the broken lines in Fig. 8. We found that our model explains the experimental results well. The correlation between the AP noise (Fig. 5) and the system QBER (Fig. 8) suggests that AP noise dominates the other sources of noise in determining the QBER when the detection efficiency is high. The results show that our efficient and low-noise SAPD is promising for reducing QBER for high-rate detection and for achieving high-speed QKD. The sensitivity

*n*is shown as a function of the hold-off period in Fig. 9 . Unexpectedly,

*n*approached not 1 but about 2 for hold-off periods larger than 200 ns in our QKD system. This indicates that our ADC has higher sensitivity to AP noise than the SD and the TIA have, i.e., there is room for further improvement for the former. Here, it should be noted that our method for screening the SAPD is valid for a QKD system with

*n*≠ 1. In this case, the predicted curves of

*QBER*do not change, but the measured (

_{LB}*P*,

_{d}*P*) should be replaced with (

_{a}*P*,

_{d}*nP*) in Fig. 7 in order to screen the useful SAPDs.

_{a}22. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. **94**(23), 230503 (2005). [CrossRef] [PubMed]

23. H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. **94**(23), 230504 (2005). [CrossRef] [PubMed]

## 6. Conclusion

## Acknowledgements

## References and links

1. | C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore India, 175–179, December (1984). |

2. | V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. |

3. | I. D. Quantique, http://www.idquantique.com/ |

4. | Q. Magi Technologies, Inc., http://www.magiqtech.com/MagiQ/Home.html |

5. | QuintessenceLabs Pty Ltd, http://www.quintessencelabs.com/ |

6. | C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA Quantum Network,” in Quantum Information and Computation III, E. J. Donkor, A. R. Pirich, and H. E. Brandt, eds., Proc. SPIE 5815, 138–149 (2005); arXiv:quant-ph/0503058v2. |

7. | M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express |

8. | Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. |

9. | A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express |

10. | A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. |

11. | N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express |

12. | Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. |

13. | N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express |

14. | J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. |

15. | Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. |

16. | J. Zhang, P. Eraerdsa, N. Walentaa, C. Barreiroa, R. Thewa, and H. Zbinden, “2.23GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” in Proc. SPIE 7681 (SPIE press, U.S.A.,2010) 76810Z. |

17. | N. Namekata and S. Inoue, “Ultra-low-noise high-speed single-photon detection using a sinusoidally gated InGaAs/InP avalanche photodiode,” in Proc. SPIE |

18. | A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Goltsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors,” Appl. Phys. Lett. |

19. | S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. |

20. | A. Tanaka, M. Fujiwara, K. Yoshino, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, and A. Tajima, A Scalable Full Quantum Key Distribution System based on Colourless Interferometric Technique and Hardware Key Distillation,” Proc. ECOC 2011, paper Mo.1.B.3 (2011). |

21. | S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. |

22. | X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. |

23. | H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. |

24. | Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. |

**OCIS Codes**

(270.5570) Quantum optics : Quantum detectors

(270.5568) Quantum optics : Quantum cryptography

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: July 26, 2011

Revised Manuscript: September 6, 2011

Manuscript Accepted: September 6, 2011

Published: October 3, 2011

**Citation**

Y. Nambu, S. Takahashi, K. Yoshino, A. Tanaka, M. Fujiwara, M. Sasaki, A. Tajima, S. Yorozu, and A. Tomita, "Efficient and low-noise single-photon avalanche photodiode for 1.244-GHz clocked quantum key distribution," Opt. Express **19**, 20531-20541 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20531

Sort: Year | Journal | Reset

### References

- C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore India, 175–179, December (1984).
- V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009). [CrossRef]
- I. D. Quantique, http://www.idquantique.com/
- Q. Magi Technologies, Inc., http://www.magiqtech.com/MagiQ/Home.html
- QuintessenceLabs Pty Ltd, http://www.quintessencelabs.com/
- C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA Quantum Network,” in Quantum Information and Computation III, E. J. Donkor, A. R. Pirich, and H. E. Brandt, eds., Proc. SPIE 5815, 138–149 (2005); arXiv:quant-ph/0503058v2.
- M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express19(11), 10387–10409 (2011). [CrossRef] [PubMed]
- Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett.92(20), 201104 (2008). [CrossRef]
- A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express16(23), 18790–18797 (2008). [CrossRef] [PubMed]
- A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett.96(16), 161102 (2010). [CrossRef]
- N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express19(11), 10632–10639 (2011). [CrossRef] [PubMed]
- Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett.91(4), 041114 (2007). [CrossRef]
- N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express17(8), 6275–6282 (2009). [CrossRef] [PubMed]
- J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett.95(9), 091103 (2009). [CrossRef]
- Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett.96(7), 071101 (2010). [CrossRef]
- J. Zhang, P. Eraerdsa, N. Walentaa, C. Barreiroa, R. Thewa, and H. Zbinden, “2.23GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” in Proc. SPIE 7681 (SPIE press, U.S.A.,2010) 76810Z.
- N. Namekata and S. Inoue, “Ultra-low-noise high-speed single-photon detection using a sinusoidally gated InGaAs/InP avalanche photodiode,” in Proc. SPIE7945 (SPIE press,U.S.A., 2011) 79452K.
- A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Goltsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors,” Appl. Phys. Lett.84(26), 5338–5340 (2004). [CrossRef]
- S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett.35(13), 2133–2135 (2010). [CrossRef] [PubMed]
- A. Tanaka, M. Fujiwara, K. Yoshino, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, and A. Tajima, A Scalable Full Quantum Key Distribution System based on Colourless Interferometric Technique and Hardware Key Distillation,” Proc. ECOC 2011, paper Mo.1.B.3 (2011).
- S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.35(12), 1956–1976 (1996). [CrossRef] [PubMed]
- X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett.94(23), 230503 (2005). [CrossRef] [PubMed]
- H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett.94(23), 230504 (2005). [CrossRef] [PubMed]
- Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt.55(12), 1953–1970 (2008). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.