OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21180–21188
« Show journal navigation

Time delay generation at high frequency using SOA based slow and fast light

Perrine Berger, Jérôme Bourderionnet, Fabien Bretenaker, Daniel Dolfi, and Mehdi Alouini  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21180-21188 (2011)
http://dx.doi.org/10.1364/OE.19.021180


View Full Text Article

Acrobat PDF (1077 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show how Up-converted Coherent Population Oscillations (UpCPO) enable to get rid of the intrinsic limitation of the carrier lifetime, leading to the generation of time delays at any high frequencies in a single SOA device. The linear dependence of the RF phase shift with respect to the RF frequency is theoretically predicted and experimentally evidenced at 16 and 35 GHz.

© 2011 OSA

1. Introduction

Slow and fast light (SFL) is becoming a wide research field driven by an extensive effort to implement this new technology in real applications [1

1. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009). [CrossRef] [PubMed]

]. In this context, SFL based devices have today to meet numerous criteria in addition to the usual slow-down factor. Among these criteria, one can quote continuous, easy, and reliable control of the induced delays, bandwidths reaching the GHz range, small footprint, high speed configurability... [2

2. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004). [CrossRef] [PubMed]

, 3

3. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005). [CrossRef]

, 4

4. K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated brillouin scattering,” Opt. Express 13, 82–88 (2005). [CrossRef] [PubMed]

, 5

5. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005). [CrossRef] [PubMed]

]. With these constraints in view, Coherent Population Oscillations (CPO) in Semiconductor Optical Amplifiers (SOA) constitute one of the most promising approaches, in particular for the processing of optically carried microwave signals [6

6. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005). [CrossRef] [PubMed]

, 7

7. S. Sales Maicas, F. Ohman, J. Capmany, and J. Mørk, “Controlling microwave signals by means of slow and fast light effects in soa-ea structures,” IEEE Photon. Technol. Lett. 19, 1589–1591 (2007). [CrossRef]

, 8

8. E. Shumakher, S. O’Dúill, and G. Eisenstein, “Signal-to-noise ratio of a semiconductor optical-amplifier-based optical phase shifter,” Opt. Lett. 34, 1940–1942 (2009). [CrossRef] [PubMed]

]. Indeed, many of these systems require a tunable delay whose bandwidth-delay product is modest compared to that needed for data buffering in telecommunication systems [1

1. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009). [CrossRef] [PubMed]

]. The frequency fop of the microwave carrier can range from 1GHz up to 100GHz (usually called “operating frequency range” Δfop), while the bandwidth of the carried data can reach 1 GHz (usually called “instantaneous bandwidth” Binst). Both the microwave data and carrier are optically transported and processed using a microwave photonics link.

A key function in optical processing of microwave signals consists in generating true time delays (TTD), which must be continuously tunable for some applications in microwave photonics, such as parallel programmable filtering. TTD operation implies a perfectly proportional evolution of the phase ϕ of the microwave signals with respect to their frequency f, ϕ = 2πτf, over [fopBinst/2, fop + Binst/2]. Moreover, tuning the delay is equivalent to tuning the slope dϕdf (as illustrated in Fig. 1(a)). These stringent requirements are mandatory in microwave photonics systems in order for instance to synchronize and coherently recombine broadband signals [11

11. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009). [CrossRef]

, 12

12. D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996). [CrossRef] [PubMed]

, 13

13. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201 (2006). [CrossRef]

].

Fig. 1 Tunable True Time Delay (TTD) (a) can be generated by combining a microwave phase shifter (b) and a tunable delay generator (c). These devices only need to work over the instantaneous bandwidth Binst near the operating frequency fop. An easy reconfiguration of the operating frequency over a wide range (Δfop) is required for microwave applications.

The generation of a tunable TTD can be broken down in two stages. First, a tunable delay τ is generated over [fopBinst/2, fop + Binst/2] (as illustrated in Fig. 1(c)). The microwave phase ϕ is then linear with respect to the microwave frequency: ϕ = 2πτf + ϕ0. When τ is tuned, ϕ0 varies. Slow and fast light devices are well suited to realize this function. Second, in order to realize a TTD unit, a tunable phase shifter is needed in order to adjust the phase bias ϕ0 (see Fig. 1(b)). For a given delay τ, a fixed phase shift −ϕ0 must be added over [fopBinst/2, fop + Binst/2]. TTD is then obtained, i.e., ϕ = 2πτf over [fopBinst/2, fop + Binst/2] (as illustrated in Fig. 1(a)). The tunable phase shifter can be easily realized by separate carrier tuning [14

14. P. Morton and J. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009). [CrossRef]

]. This method consists in tuning the phase of the optical carrier, which is single-sideband modulated by the microwave signal. The microwave signal is then straightforwardly phase shifted. A demonstration of this concept has been conducted in [15

15. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010). [CrossRef] [PubMed]

] using Stimulated Brillouin Scattering (SBS) in a 20-km long fiber. In this example, SBS is used for both the phase shift and the delay, but at the cost of the very long switching time associated with the propagation through 20 km of fiber.

Recently, research has been conducted in order to increase the operating frequency in slow and fast light devices based on SOAs. Promising results have been obtained for phase shifters: higher frequencies can be reached either by filtering out the red shifted side band of the signal at the output of the SOA [23

23. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33, 1084–1086 (2008). [CrossRef] [PubMed]

] or by forcing the CPO mechanism to be efficient beyond the inverse of the carrier lifetime [24

24. P. Berger, J. Bourderionnet, G. de Valicourt, R. Brenot, D. Dolfi, F. Bretenaker, and M. Alouini, “Experimental demonstration of enhanced slow and fast light by forced coherent population oscillations in a semiconductor optical amplifier,” Opt. Lett. 35, 2457 (2010). [CrossRef] [PubMed]

]. These techniques have been shown to be quite reliable for inducing tunable RF phase shifts at a given RF frequency, i. e., without any specific relation between the induced phase shift and the frequency. However, the achievement of TTD at a frequency higher than the intrinsic limit in SOA remains till now a challenging issue.

In this paper, we show how Up-converted Coherent Population Oscillations (UpCPO) enable to get rid of this intrinsic limitation of the carrier lifetime, leading to the generation of time delay at any high frequencies in a single SOA device. In a first part, we explain the principle and derive the theory. In a second part, we experimentally evidence the generation of tunable delays induced and controlled by UpCPO at 16 and 35 GHz.

2. Principle and theory of UpCPO

Fig. 2 Principle of integrated delay generator using UpCPO in a SOA. An optically carried RF signal, at a high RF frequency fop, propagates through the SOA. A second optically carried RF signal, at a low RF frequency (fcpo < a few GHz), induces CPO. The modal gain g is then modulated at fcpo. The gain modulation at fcpo generates then two optically carried RF signals at f = fopfcpo or f = fop + fcpo. The CPO effect is controlled by the average gain < g > (through the current or the input optical power), which permits to control the delay τ of the RF signal at f.

We derived the model of UpCPO from the model of CPO presented in [10

10. P. Berger, M. Alouini, J. Bourderionnet, F. Bretenaker, and D. Dolfi, “Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light,” Opt. Express 18, 685–693 (2010). [CrossRef] [PubMed]

], which relies on only a few parameters that are independent of the operating conditions (injected current, input optical power). We consider a first laser modulated by a microwave signal at fcpo. The field is then composed of the optical carrier of complex amplitude E0 and two sidebands of complex amplitudes E1 and E−1. The optical intensity is then given by 12|E|2=U1+Mcpoei2πfcpot+c.c., under small modulation depth approximation. U1 is the DC component of the intensity, Mcpo=12(E0E1*+E1E0*) is the beat-note term at frequency fcpo.

In the same way, we consider a second laser modulated by a microwave signal at fop. The field is then composed of the optical carrier of complex amplitude F0 and two sidebands of complex amplitudes F2 and F−2. The optical intensity is then given by 12|F|2=U2+Mopei2πfopt+c.c., under small modulation depth approximation. U2 is the DC component of the intensity, Mop=12(F0F2*+F2F0*) is the beat-note term at the frequency fop.

Consequently, the following propagation equations can be derived, under small signal conditions:
dMsignal+dz=(Γ<g>γ)Msignal++Γgcpo[12(MopR+MopB)+iα2(MopRMopB)],
(2)
dMsignaldz=(Γ<g>γ)Msignal+Γgcpo*[12(MopR+MopB)+iα2(MopRMopB)],
(3)
where γ holds for the internal losses; Γ is the confinement factor; α is the linewidth enhancement factor, introduced to model the index-gain coupling induced by the carriers. R (resp., B) denotes the optical intensity resulting from the beat-note between the optical carrier F0 and the red-shifted (resp., blue-shifted) sideband at fop: MopR=F0F2*(resp.,MopB=F2F0*). Msignal+ and Msignal denote the signals created by UpCPO at fop + fcpo and fopfcpo, respectively. gcpo*is the complex conjugate of gcpo.

The parameters of the SOA are set at the same values as in [10

10. P. Berger, M. Alouini, J. Bourderionnet, F. Bretenaker, and D. Dolfi, “Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light,” Opt. Express 18, 685–693 (2010). [CrossRef] [PubMed]

]. Most of these parameters are extracted from simple measurements, as described in [10

10. P. Berger, M. Alouini, J. Bourderionnet, F. Bretenaker, and D. Dolfi, “Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light,” Opt. Express 18, 685–693 (2010). [CrossRef] [PubMed]

]. For this model of UpCPO, the only additional input parameters are the linewidth enhancement factor (α = 4.5) and the chirp parameter of the modulator (0.72). Indeed, the up-conversion reveals the index-gain coupling induced by the carriers (see Eq. 3) and it is then sensitive to the input values of MopR and MopB. The results of the simulations will be discussed in the following part.

3. Experimental demonstration of tunable delays by UpCPO

In our experiments, we used a commercially available SOA (InP/InGaAsP Quantum Well Booster Amplifier from COVEGA). The length of this SOA is 1.5mm and the quantum well active area cross-section is evaluated to be 0.06μm2. This SOA is not specifically optimized for slow and fast light. Higher delay-instantaneous bandwidth products could be expected with custom SOA designs.

Our setup is presented in Fig. 3. A first laser is modulated at low frequency fcpo < 2.5GHz. A second laser, at a different wavelength, is modulated at a higher frequency, which corresponds to the operating frequency fop > 10GHz. The wavelengths of the lasers are λ1 = 1548.59nm and λ2 = 1547.03nm. We have chosen the laser wavelengths close to the maximum gain of the SOA, and the wavelength difference Δλ which corresponds to 195GHz has been chosen larger than the targeted operating frequency range (here 35GHz, limited by the modulator), but small enough for the two channels to undergo the same optical gain. The first channel is dedicated to the electrical to optical conversion of the signal at the operating frequency fop. It is composed of a laser diode (DFB from JDS Uniphase) and a z-cut LiNbO3 Mach Zehnder intensity modulator (MZM), working up to 40GHz. This modulator has a chirp rate of 0.72. The second channel, composed of a directly modulated laser diode (Alcatel LMI), optically converts the RF signal which is at a low RF frequency fcpo, and which induces the CPO effect. The optical power of the two channels are balanced, and the input RF modulation rates are respectively 0.14 at 16GHz and 0.33 at 1GHz. The total input optical power into the SOA is 13.3dBm. In the SOA, the gain modulation induced by CPO is seen by the second channel, and UpCPO signal is created by XGM at f0fcpo and f0 + fcpo. The phase of these signals is experimentally analyzed thanks to a Vector Network Analyzer. Actually, in the experimental set-up, the VNA emits at the frequency f. fop is emitted by an independent RF generator. fcpo is generated by difference between f and fop. After the photodiode, the electrical spectrum contents four frequencies (cf. Fig. 2(a))). However the VNA only analyses the frequency that it emits, i.e. f. In the experiment, we measure the phase of this signal while f is swept. The phase reference has been chosen at high current (599mA), where the phase is supposed to be constant versus frequency. The delays have been measured by a linear fit from the experimental data, and the instantaneous bandwidth has been defined as the maximum frequency offset for which the relative phase error between the experimental data and the linear fit is kept below 15%.

Fig. 3 Demonstration of an integrated delay generator using UpCPO in SOA. A first channel is composed of a laser diode and a Mach Zehnder intensity modulator (MZM), and is dedicated to the electrical to optical conversion of the RF signal at the operating frequency fop. The second channel, composed of a directly modulated laser diode, optically converts the RF signal which is at a low RF frequency fcpo. Both channels propagate through the SOA. The RF signal at the frequency f = fopfcpo or f = fop + fcpo is retrieved in the electrical domain by a photodiode and analyzed by a Vector Network Analyzer (VNA). The VNA generates the signal at the frequency f which is converted by a RF mixer down to fcpo.

In Figs. 4(B.2) and 4(B.3), the measured RF phase shift is displayed for fop = 16GHz and fop = 35GHz, respectively, while fcpo is swept from 0 to 2.5GHz. We show that the measured phase shift of the signal at f = fop ± fcpo is affine with respect to the frequency, with a slope tunable with the bias current. We experimentally demonstrate a delay generator, electrically tunable from 0 to 89 ps, with an instantaneous bandwidth of 1.2GHz, and easily reconfigurable at 16GHz and 35GHz.

Fig. 4 The figures (A.1) and (A.2) respectively represent the typical simulated and measured phase shifts induced in the SOA by usual CPO with respect to the RF frequency. By adjusting the current from 42 mA to 200 mA, the delays are tunable from 0 to 380ps, over an instantaneous bandwidth of 320MHz. The operating frequency range is limited to the instantaneous bandwidth. The figure (B.1) represents the simulated phase shift induced in a SOA with respect to frequency, by combining XGM and CPO, around an arbitrarily high frequency fop. (B.2) and (B.3) represent the corresponding measured phase shift at fop = 16GHz and fop = 35GHz, respectively. By adjusting the current from 80 mA to 599 mA, delays are tunable from 0 to 89ps, over an instantaneous bandwidth of 1.2GHz. Here we experimentally show that UpCPO enable the operating frequency to reach 35 GHz, far beyond the intrinsic bandwidth of CPO.

Moreover, in Figs. 4(B.2) and 4(B.3), the phase shifts measured for fop = 16GHz and fop = 35GHz show the same behavior with respect to the RF frequency and to the current. Since the operating frequency fop is assumed to be higher than the inverse of the carrier lifetime, the gain of the SOA is not modulated at fop. This explains that the experimental results are independent of fop. Fig. 4(B.1) displays the theoretical results derived from our model, and shows a very good agreement with the experimental data both at 16GHz and 35GHz (Fig. 4(B.2) and 4(B.3)). From a practical point of view, this characteristic offers a strong asset: the device is easily reconfigurable at any operating frequency fop.

It is worth stressing out the contribution of the linewidth enhancement factor α. Indeed, α is known to play a role in the SOA slow and fast light schemes involving filtering of the red sideband of the optical output [23

23. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33, 1084–1086 (2008). [CrossRef] [PubMed]

]. Here, α appears in the equations (3) and (2). However, it is weighted by MopRMopB, and not by MopR like in the SOA slow and fast light schemes involving filtering of the red sideband of the optical output [23

23. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33, 1084–1086 (2008). [CrossRef] [PubMed]

]. MopR and MopB are different because of the non-zero value of α, but α2(MopRMopB)has still a small contribution compared to 12(MopR+MopB). The impact of the factor α is only the asymmetry in the curves displayed in Fig 4(B.3). Consequently, the described tunable-delay principle works with a small or even zero α.

In order to compare the performances of CPO and UpCPO in the same component, we represent the typical simulated and measured RF phase shifts induced by CPO in the SOA with respect to the RF frequency on Figs. 4A.1 and 4A.2. To perform this measurement, we used a set-up similar to Fig. 3, except that only the first channel is connected. The MZM is directly connected to the output of the VNA. The total input optical power into the SOA is 10.0dBm. In this case, the phase reference has been taken at low current (42mA). We show that the phase is proportional to the modulation frequency only below 320MHz (at any current). The delays are tunable from 0 to 380ps by adjusting the current. However, we note that the use of a SOA greatly increases the operating frequency range compared to the first demonstrations of CPO in doped crystals.

The key figure in order to compare two tunable-delay generators is the delay-instantaneous bandwidth product, which is equal to 0.11 in both experiments displayed in Fig. 4 (with CPO or UpCPO). Consequently, we have shown that UpCPO enable to extend the operating frequency of a tunable delay line based on SOA from 320MHz up to 16GHz and 35GHz, within the same component, while keeping the same delay-instantaneous bandwidth.

We experimentally demonstrated that the operating frequency range Δfop can reach 35GHz. However, the upper limit of the operating frequency range Δfop is expected to lie beyond 100GHz. Indeed, upconversion efficiencies are linked with the SOA optical gain spectrum [26

26. Y.-K. Seo, J.-H. Seo, and W.-Y. Choi, “Photonic frequency-upconversion efficiencies in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 15, 751 –753 (2003). [CrossRef]

]: high upconversion efficiency is achieved as long as the input wavelengths are in the optical gain bandwidth of the SOA (about 80nm, i.e., 9THz). Consequently, the operating frequency range can potentially reach THz frequencies.

4. Conclusion

Acknowledgment

We thank Laurent Bramerie and Jean-Claude Simon from ENSSAT, Lannion, France, and Alain Enard and Frederic Van Dijk from Alcatel-Thales III–V Lab, Palaiseau, France for material support. We also thank Anthony Carré for his technical support. We acknowledge partial financial support from the FP7 European project GOSPEL and the French MoD (Délégation générale à l’armement).

References and links

1.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009). [CrossRef] [PubMed]

2.

P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004). [CrossRef] [PubMed]

3.

J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005). [CrossRef]

4.

K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated brillouin scattering,” Opt. Express 13, 82–88 (2005). [CrossRef] [PubMed]

5.

J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005). [CrossRef] [PubMed]

6.

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005). [CrossRef] [PubMed]

7.

S. Sales Maicas, F. Ohman, J. Capmany, and J. Mørk, “Controlling microwave signals by means of slow and fast light effects in soa-ea structures,” IEEE Photon. Technol. Lett. 19, 1589–1591 (2007). [CrossRef]

8.

E. Shumakher, S. O’Dúill, and G. Eisenstein, “Signal-to-noise ratio of a semiconductor optical-amplifier-based optical phase shifter,” Opt. Lett. 34, 1940–1942 (2009). [CrossRef] [PubMed]

9.

L. Brillouin and A. Sommerfeld, Wave Propagation and Group Velocity (New York, Academic Press, 1960).

10.

P. Berger, M. Alouini, J. Bourderionnet, F. Bretenaker, and D. Dolfi, “Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light,” Opt. Express 18, 685–693 (2010). [CrossRef] [PubMed]

11.

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009). [CrossRef]

12.

D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996). [CrossRef] [PubMed]

13.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201 (2006). [CrossRef]

14.

P. Morton and J. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009). [CrossRef]

15.

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010). [CrossRef] [PubMed]

16.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003). [CrossRef] [PubMed]

17.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef] [PubMed]

18.

P. Berger, J. Bourderionnet, M. Alouini, F. Bretenaker, and D. Dolfi, “Theoretical study of the spurious-free dynamic range of a tunable delay line based on slow light in soa,” Opt. Express 17, 20584–20597 (2009). [CrossRef] [PubMed]

19.

S. O’Dúill, E. Shumakher, and G. Eisenstein, “Noise properties of microwave phase shifters based on semiconductor optical amplifiers,” J. Lightwave Technol. 28, 791 –797 (2010). [CrossRef]

20.

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, S. O’Dúill, G. Eisenstein, and M. Alouini, “Intermodulation distortion in microwave phase shifters based on slow and fast light propagation in semiconductor optical amplifiers,” Opt. Lett. 35, 2762–2764 (2010). [CrossRef] [PubMed]

21.

J. Lloret, F. Ramos, J. Sancho, I. Gasulla, S. Sales, and J. Capmany, “Noise spectrum characterization of slow light soa-based microwave photonic phase shifters,” IEEE Photon. Technol. Lett. 22, 1005 –1007 (2010). [CrossRef]

22.

J. Lloret, F. Ramos, W. Xue, J. Sancho, I. Gasulla, S. Sales, J. Moerk, and J. Capmany, “The influence of optical filtering on the noise performance of microwave photonic phase shifters based on soas,” J. Lightwave Technol. 29, 1746–1752 (2011). [CrossRef]

23.

W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33, 1084–1086 (2008). [CrossRef] [PubMed]

24.

P. Berger, J. Bourderionnet, G. de Valicourt, R. Brenot, D. Dolfi, F. Bretenaker, and M. Alouini, “Experimental demonstration of enhanced slow and fast light by forced coherent population oscillations in a semiconductor optical amplifier,” Opt. Lett. 35, 2457 (2010). [CrossRef] [PubMed]

25.

Y.-K. Seo, C.-S. Choi, and W.-Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14, 1448 – 1450 (2002). [CrossRef]

26.

Y.-K. Seo, J.-H. Seo, and W.-Y. Choi, “Photonic frequency-upconversion efficiencies in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 15, 751 –753 (2003). [CrossRef]

27.

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18, 6172–6182 (2010). [CrossRef] [PubMed]

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Optoelectronics

History
Original Manuscript: July 19, 2011
Revised Manuscript: September 7, 2011
Manuscript Accepted: September 19, 2011
Published: October 10, 2011

Citation
Perrine Berger, Jérôme Bourderionnet, Fabien Bretenaker, Daniel Dolfi, and Mehdi Alouini, "Time delay generation at high frequency using SOA based slow and fast light," Opt. Express 19, 21180-21188 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21180


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326, 1074–1077 (2009). [CrossRef] [PubMed]
  2. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett.29, 2291–2293 (2004). [CrossRef] [PubMed]
  3. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B22, 1062–1074 (2005). [CrossRef]
  4. K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated brillouin scattering,” Opt. Express13, 82–88 (2005). [CrossRef] [PubMed]
  5. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a raman fiber amplifier,” Opt. Express13, 6092–6098 (2005). [CrossRef] [PubMed]
  6. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express13, 8136–8145 (2005). [CrossRef] [PubMed]
  7. S. Sales Maicas, F. Ohman, J. Capmany, and J. Mørk, “Controlling microwave signals by means of slow and fast light effects in soa-ea structures,” IEEE Photon. Technol. Lett.19, 1589–1591 (2007). [CrossRef]
  8. E. Shumakher, S. O’Dúill, and G. Eisenstein, “Signal-to-noise ratio of a semiconductor optical-amplifier-based optical phase shifter,” Opt. Lett.34, 1940–1942 (2009). [CrossRef] [PubMed]
  9. L. Brillouin and A. Sommerfeld, Wave Propagation and Group Velocity (New York, Academic Press, 1960).
  10. P. Berger, M. Alouini, J. Bourderionnet, F. Bretenaker, and D. Dolfi, “Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light,” Opt. Express18, 685–693 (2010). [CrossRef] [PubMed]
  11. J. Yao, “Microwave photonics,” J. Lightwave Technol.27, 314–335 (2009). [CrossRef]
  12. D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt.35, 5293–5300 (1996). [CrossRef] [PubMed]
  13. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24, 201 (2006). [CrossRef]
  14. P. Morton and J. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett.21, 1686–1688 (2009). [CrossRef]
  15. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated brillouin scattering in optical fibers,” Opt. Express18, 22599–22613 (2010). [CrossRef] [PubMed]
  16. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003). [CrossRef] [PubMed]
  17. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301, 200–202 (2003). [CrossRef] [PubMed]
  18. P. Berger, J. Bourderionnet, M. Alouini, F. Bretenaker, and D. Dolfi, “Theoretical study of the spurious-free dynamic range of a tunable delay line based on slow light in soa,” Opt. Express17, 20584–20597 (2009). [CrossRef] [PubMed]
  19. S. O’Dúill, E. Shumakher, and G. Eisenstein, “Noise properties of microwave phase shifters based on semiconductor optical amplifiers,” J. Lightwave Technol.28, 791 –797 (2010). [CrossRef]
  20. P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, S. O’Dúill, G. Eisenstein, and M. Alouini, “Intermodulation distortion in microwave phase shifters based on slow and fast light propagation in semiconductor optical amplifiers,” Opt. Lett.35, 2762–2764 (2010). [CrossRef] [PubMed]
  21. J. Lloret, F. Ramos, J. Sancho, I. Gasulla, S. Sales, and J. Capmany, “Noise spectrum characterization of slow light soa-based microwave photonic phase shifters,” IEEE Photon. Technol. Lett.22, 1005 –1007 (2010). [CrossRef]
  22. J. Lloret, F. Ramos, W. Xue, J. Sancho, I. Gasulla, S. Sales, J. Moerk, and J. Capmany, “The influence of optical filtering on the noise performance of microwave photonic phase shifters based on soas,” J. Lightwave Technol.29, 1746–1752 (2011). [CrossRef]
  23. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett.33, 1084–1086 (2008). [CrossRef] [PubMed]
  24. P. Berger, J. Bourderionnet, G. de Valicourt, R. Brenot, D. Dolfi, F. Bretenaker, and M. Alouini, “Experimental demonstration of enhanced slow and fast light by forced coherent population oscillations in a semiconductor optical amplifier,” Opt. Lett.35, 2457 (2010). [CrossRef] [PubMed]
  25. Y.-K. Seo, C.-S. Choi, and W.-Y. Choi, “All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.14, 1448 – 1450 (2002). [CrossRef]
  26. Y.-K. Seo, J.-H. Seo, and W.-Y. Choi, “Photonic frequency-upconversion efficiencies in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.15, 751 –753 (2003). [CrossRef]
  27. M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express18, 6172–6182 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited