## One stage pulse compression at 1554nm through highly anomalous dispersive photonic crystal fiber |

Optics Express, Vol. 19, Issue 22, pp. 21809-21817 (2011)

http://dx.doi.org/10.1364/OE.19.021809

Acrobat PDF (2679 KB)

### Abstract

We demonstrate the pulse compression at 1554 nm using one stage of highly anomalous dispersive photonic crystal fibers with a dispersion value of 600 ps/nm∙km. A 1.64 ps pulse is compressed down to 0.357 ps with a compression factor of 4.6, which agrees reasonably well with the simulation value of 6.1. The compressor is better suited for high energy ultra-short pulse compression than conventional low dispersive single mode fibers.

© 2011 OSA

## 1. Introduction

1. N. Akhmediev, N. V. Mitzkevich, and F. V. Lukin, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. **27**(3), 849–857 (1991). [CrossRef]

2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental-observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. **45**(13), 1095–1098 (1980). [CrossRef]

4. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express **13**(18), 6848–6855 (2005). [CrossRef] [PubMed]

5. B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. **43**(17), 915–916 (2007). [CrossRef]

6. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express **13**(16), 6153–6159 (2005). [CrossRef] [PubMed]

7. A. A. Amorim, M. V. Tognetti, P. Oliveira, J. L. Silva, L. M. Bernardo, F. X. Kärtner, and H. M. Crespo, “Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers,” Opt. Lett. **34**(24), 3851–3853 (2009). [CrossRef] [PubMed]

*β*parameter, the nonlinear effects in a fiber can be used to control the behavior of a pulse propagating through the fiber.

_{2}^{−20}m

^{2}W

^{−1}in silica glass). Depending on the initial pulse power (P

_{0}), and initial width (T

_{0}) of the pulse, the evolution of the pulse through the fiber based on the interplay between the dispersive and nonlinear effects can be studied. The two important terms are the dispersion length (

*L*), and the nonlinear length (

_{D}*L*). where

_{NL}*γ*is the effective nonlinearity.

*γ*is calculated as

*γ=2πn*, where

_{2}/λA_{eff}*A*is the effective mode area.

_{eff}*A*is expressed aswhere

_{eff}*F(x,y)*is the fundamental mode distribution.

*D*is positive. To generate

*N*-th order soliton, the following equation should be satisfied:

*F*and the quality factor

_{c}*Q*are defined to describe the efficiency [3]. where

_{c}*T*is the width of the compressed pulse, and

_{comp}*P*is the peak power of the compressed pulse normalized to the input pulse.

_{comp}## 2. Highly anomalous dispersive photonic crystal fiber design and characterization

8. L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. **15**(4), 540–542 (2003). [CrossRef]

11. J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. **25**(2), 96–98 (2000). [CrossRef] [PubMed]

8. L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. **15**(4), 540–542 (2003). [CrossRef]

10. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. **8**(11), 1510–1512 (1996). [CrossRef]

11. J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. **25**(2), 96–98 (2000). [CrossRef] [PubMed]

^{TM}software that is based on full vectorial PWE. Since our PCF design is not a perfect crystal without defects, we need to use a supercell having a size of 8 × 8 instead of a natural unit cell to implement the periodic boundary conditions [11

11. J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. **25**(2), 96–98 (2000). [CrossRef] [PubMed]

## 3. Simulation of pulse propagation

*A*is calculated to be about 44µm

_{eff}^{2}. The effective nonlinearity

*γ*is about 2 km

^{-1}W

^{-1}. Given an input pulse of 1.64 ps and peak power of 1000 W with an 1554 nm center wavelength, the nonlinear length

*L*is 0.5 m. To avoid the effects of the mismatch between simulated and measured values of dispersion, we use the measured dispersion value at 1554 nm, which is about 600ps/nm/km, for the calculation of

_{NL}*β*. According to Eq. (1), for 1554 nm center wavelength,

_{2}*β*is calculated to be -770 ps

_{2}^{2}/km. Dispersion length

*L*is estimated to be around 4.4 m. According to Eq. (6), the given pulse would excite a soliton of order

_{D}*N≈*3. Using Eq. (7), an optimum PCF length is predicted to be 1.58 m.

*A*is the magnitude of the pulse envelope,

*ɷ*

_{0}is the center angular frequency, and

*β*is the fiber’s third-order dispersion.

_{3}*z*are compared. At the optimum fiber length

*z*of 1.7 m, the compressed pulse has the greatest power and shortest duration. The initial 1.64 pm pulse compresses down to a duration of 269 fs with a compression factor

_{opt}*F*of 6.1 and a quality factor of compression

_{c}*Q*of 0.79. The optimum fiber length 1.58m predicted by Eq. (7) agrees reasonably well with the simulated 1.7 m. The discrepancy comes from the non-uniformity of dispersion within the entire simulation bandwidth. Figure 5 illustrates the 3D waterfall plot of the evolution of the field during propagation with the characteristic of a typical third order soliton [3]. This agrees with the result calculated from Eq. (6). Figure 6 shows the input and output spectral intensity at optimum fiber length of 1.7 m, which agrees well with the typical spectral of third order soliton at optimum propagation distance [3].

_{c}1. N. Akhmediev, N. V. Mitzkevich, and F. V. Lukin, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. **27**(3), 849–857 (1991). [CrossRef]

## 4. Experimental results of pulse compression

## 4. Summary

## References and links

1. | N. Akhmediev, N. V. Mitzkevich, and F. V. Lukin, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. |

2. | L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental-observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. |

3. | G. Agrawal, |

4. | M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express |

5. | B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. |

6. | D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express |

7. | A. A. Amorim, M. V. Tognetti, P. Oliveira, J. L. Silva, L. M. Bernardo, F. X. Kärtner, and H. M. Crespo, “Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers,” Opt. Lett. |

8. | L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. |

9. | J. A. West, N. Venkataramam, C. M. Smith, and M. T. Gallagher, “Photonic crystal fibers,” in |

10. | K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. |

11. | J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. |

12. | A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett. |

**OCIS Codes**

(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

(320.5520) Ultrafast optics : Pulse compression

(060.5295) Fiber optics and optical communications : Photonic crystal fibers

**ToC Category:**

Ultrafast Optics

**History**

Original Manuscript: August 11, 2011

Revised Manuscript: September 27, 2011

Manuscript Accepted: September 27, 2011

Published: October 20, 2011

**Citation**

Maggie Yihong Chen, Harish Subbaraman, and Ray T. Chen, "One stage pulse compression at 1554nm through highly anomalous dispersive photonic crystal fiber," Opt. Express **19**, 21809-21817 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21809

Sort: Year | Journal | Reset

### References

- N. Akhmediev, N. V. Mitzkevich, and F. V. Lukin, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron.27(3), 849–857 (1991). [CrossRef]
- L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental-observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett.45(13), 1095–1098 (1980). [CrossRef]
- G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
- M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express13(18), 6848–6855 (2005). [CrossRef] [PubMed]
- B. Kibler, R. Fischer, R. A. Lacourt, E. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimized one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett.43(17), 915–916 (2007). [CrossRef]
- D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express13(16), 6153–6159 (2005). [CrossRef] [PubMed]
- A. A. Amorim, M. V. Tognetti, P. Oliveira, J. L. Silva, L. M. Bernardo, F. X. Kärtner, and H. M. Crespo, “Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers,” Opt. Lett.34(24), 3851–3853 (2009). [CrossRef] [PubMed]
- L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett.15(4), 540–542 (2003). [CrossRef]
- J. A. West, N. Venkataramam, C. M. Smith, and M. T. Gallagher, “Photonic crystal fibers,” in Proc. 27th Eur. Conf. on Opt. Comm. (2001), Vol. 4, pp. 582 –585.
- K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett.8(11), 1510–1512 (1996). [CrossRef]
- J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett.25(2), 96–98 (2000). [CrossRef] [PubMed]
- A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett.24(5), 276–278 (1999). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.