OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22417–22422
« Show journal navigation

Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement

Yusheng Bian, Zheng Zheng, Ya Liu, Jiansheng Liu, Jinsong Zhu, and Tao Zhou  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22417-22422 (2011)
http://dx.doi.org/10.1364/OE.19.022417


View Full Text Article

Acrobat PDF (1043 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel hybrid plasmonic waveguide consisting of a high-index dielectric nanowire placed above a triangular metal wedge substrate is proposed and analyzed theoretically. The strong coupling between the wedge plasmon polariton and the dielectric nanowire mode results in both the ultra-tight confinement and low propagation loss. Compared to the previous studied hybrid surface plasmon polariton structures without the metal wedge substrate, stronger field enhancement in the low-index gap region as well as improved figure of merit (FOM) could be realized simultaneously. Results of the modal properties considering certain fabrication imperfections show that the proposed structure is also quite tolerant to these errors.

© 2011 OSA

1. Introduction

Surface plasmon polariton (SPP) waveguides leveraging the electromagnetic waves coupled to electron oscillations at the metal/dielectric structures have become a hotly studied area in nanophotonics, due to their prospect of deep-subwavelength light guiding [1

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

]. Many novel structures, such as metal slot waveguides [2

2. G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005). [CrossRef] [PubMed]

5

5. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]

], channel SPP (CPP) waveguides [6

6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]

,7

7. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31(23), 3447–3449 (2006). [CrossRef] [PubMed]

] and wedge plasmon polariton (WPP) waveguides [8

8. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005). [CrossRef]

11

11. T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104(3), 033102 (2008). [CrossRef]

], have been proposed, numerically analyzed and experimentally demonstrated. These waveguides could provide tight confinement of light but suffer pretty high propagation loss, which poses challenges for further device integration. Recently, several hybrid plasmonic waveguides have been considered to achieve sub-wavelength mode confinement with relatively low loss [12

12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

17

17. Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B 27(6), 1260–1265 (2010). [CrossRef]

], which could have great impact on realizing optical interconnects at deep sub-wavelength scales. Instead of guiding the light purely by the SPP along the metal/dielectric interface, dielectric index contrast near the metal surface also play an important role in confining the wave in these hybrid SPP waveguides. Although the overall geometrical sizes of their structures are comparable to those of some dielectric nanophotonic devices, these hybrid waveguides offer unique advantages such as large field enhancement, strong light-matter interaction, and lower crosstalk, which make them appealing building blocks for novel integrated nanophotonic components.. Plasmonic nanolasers [18

18. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

,19

19. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides,” IEEE Photon. Technol. Lett. 23(13), 884–886 (2011). [CrossRef]

] and various functional passive devices, such as directional couplers [20

20. H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010). [CrossRef]

,21

21. X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor–insulator–metal strip waveguides,” Opt. Express 18(18), 18945–18959 (2010). [CrossRef] [PubMed]

], Y-switches [22

22. M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010). [CrossRef] [PubMed]

] and ring-resonators [21

21. X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor–insulator–metal strip waveguides,” Opt. Express 18(18), 18945–18959 (2010). [CrossRef] [PubMed]

], based on such structures had been intensively studied.

The hybrid plasmonic waveguides are designed based on plasmonic waveguide structures with additional high refractive index dielectric nanostructures placed very close to the metal surface. The optical signal is guided not only at the metal/dielectric interface but also by the index contrast between the high and low index dielectric structures near the metal surface as well. By tuning the hybridization between the SPP modes and the waveguide modes, the characteristics of the hybrid mode can be shifted from dielectric-like toward SPP-like [12

12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

]. So far, the studied hybrid plasmonic waveguides are designed based on the traditional traveling SPP along the flat metal/dielectric surface [12

12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

], the long-range SPP (LRSPP) mode of thin metal stripes [14

14. Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17(23), 21320–21325 (2009). [CrossRef] [PubMed]

], the dielectric-loaded SPP (DLSPP) mode [16

16. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18(23), 23756–23762 (2010). [CrossRef] [PubMed]

], the plasmonic nanowire mode [17

17. Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B 27(6), 1260–1265 (2010). [CrossRef]

], or the plasmonic edge modes of truncated metal films [15

15. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010). [CrossRef] [PubMed]

,19

19. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides,” IEEE Photon. Technol. Lett. 23(13), 884–886 (2011). [CrossRef]

]. The properties of the hybrid plasmonic modes are heavily influenced by those of the corresponding SPP modes. For example, the long-range hybrid SPP mode of the symmetric hybrid plasmonic waveguide also could possess ultra-low propagation loss similar to that of the traditional LRSPP waveguides [23

23. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]

]. As significantly improving the transmission loss while maintaining a highly confined mode is the goal for most of the hybrid waveguide designs, the compromise between the mode confinement and loss still exists. Reduced effective mode area is realized when the gap between the high-index structure and the metal surface is shrunk. The hybrid plasmonic waveguide is shown to be able to achieve ultra-deep-subwavelength mode area with a very small gap width in [12

12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

]. However, limited by the mode confinement capability of the corresponding SPP modes involved, further downscaling of the hybrid mode area seems difficult as the gap width is already minimized for practical implementations.

To circumvent the above problem and find an alternative approach to reduce the mode area, here we propose a novel hybrid plasmonic waveguide that employs a triangular metal wedge as the substrate. By exploiting the extraordinary confinement property of the wedge plasmon polariton (WPP) [8

8. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005). [CrossRef]

11

11. T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104(3), 033102 (2008). [CrossRef]

] at the top corner of the wedge and the advantages of the hybrid structures [12

12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

], a novel hybrid WPP waveguide is proposed. Simulation reveals that, compared to the previously demonstrated flat metallic substrate based hybrid plasmonic waveguide, the hybrid WPP waveguide could achieve even stronger mode confinement with similar propagation length. Such ultra-deep-subwavelength confinement could enable various applications such as ultra-compact integrated photonic components, manipulation of particles by optical forces [24

24. X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11(2), 321–328 (2011). [CrossRef] [PubMed]

], and more.

2. Geometry and modal properties of the proposed hybrid WPP waveguides

We first consider waveguide configurations with nontruncated metal wedges (i.e. hw→∞).To avoid singularities in simulations, the tip of the top corner are rounded with a 10nm curvature [26

26. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24(9), 2333–2342 (2007). [CrossRef]

]. |E(x,y)| distributions of the fundamental plasmonic mode of the hybrid WPP waveguides are shown in Fig. 2
Fig. 2 (a)-(e)|E(x,y)| distributions of the fundamental plasmonic mode of hybrid WPP waveguides with different tip-angles (h = 5nm), where the extreme case of θ = 180deg corresponds to the hybrid plasmonic waveguide in [12] (The top tip of the metal wedge are rounded with a curvature of 10nm. Note that the field distributions are normalized so that the surface integrals of the power flow in the cross section are equal); (f) |E(x,y)| distributions along y direction at the center position of the nanowire.
, where the diameter of the nanowire is fixed at 200nm and the distance h is set at 5nm. The metal wedge tip-angle is chosen at 20deg, 60deg, 100deg, 140deg and 180deg, respectively. We note that the extreme case of 180deg corresponds to the hybrid plasmonic waveguide with flat metallic substrate as investigated in [12

12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

]. It is shown that for all the above cases, the low-index nanogap between the dielectric nanowire and the metal wedge could effectively confine a large portion of the field due to the slot effect [12

12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

,16

16. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18(23), 23756–23762 (2010). [CrossRef] [PubMed]

,27

27. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]

]. A metal wedge with smaller θ would result in stronger field enhancement in the gap region, especially near the wedge tip. At larger θ, the field enhancement is less obvious, and more electric field is distributed along the metal surface, leading to an increased mode area. These phenomena suggest that in order to suppress the mode area and enhance the mode confinement, a metal wedge with a sharper tip is preferred.

To couple to the proposed hybrid plasmonic waveguide with a deep-subwavelength mode size, coupling schemes for the traditional wedge plasmon polariton modes by means of the continuously geometrically deformed metal surface [9

9. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008). [CrossRef] [PubMed]

] could be adopted, while a reversed configuration could be used to convert the hybrid WPP mode to the conventional hybrid plasmonic mode (i.e. the hybrid mode on the flat metal surface as in [12

12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

]).

3. Conclusions

In this paper, we have proposed and studied a novel hybrid plasmonic structure based on the wedge plasmon polariton waveguide. The combination of the unique properties of WPP and the advantages associated with the hybrid plasmonic structures provide us a new avenue to further improve some of the key characteristics of the waveguide. By optimizing the waveguide geometry, ultra-deep-subwavelength mode confinement could be achieved while maintaining relatively long propagation distance. Simulation results reveal the structure is also quite tolerant to fabrication errors.

Acknowledgments

This work was supported by 973 Program (2009CB930701), NSFC (60921001/61077064) and PCSIRT, SEM, and the Innovation Foundation of BUAA for PhD Graduates.

References and links

1.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

2.

G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005). [CrossRef] [PubMed]

3.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005). [CrossRef]

4.

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]

5.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]

6.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]

7.

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31(23), 3447–3449 (2006). [CrossRef] [PubMed]

8.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005). [CrossRef]

9.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008). [CrossRef] [PubMed]

10.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008). [CrossRef] [PubMed]

11.

T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys. 104(3), 033102 (2008). [CrossRef]

12.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

13.

D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009). [CrossRef] [PubMed]

14.

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17(23), 21320–21325 (2009). [CrossRef] [PubMed]

15.

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010). [CrossRef] [PubMed]

16.

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18(23), 23756–23762 (2010). [CrossRef] [PubMed]

17.

Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B 27(6), 1260–1265 (2010). [CrossRef]

18.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

19.

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides,” IEEE Photon. Technol. Lett. 23(13), 884–886 (2011). [CrossRef]

20.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010). [CrossRef]

21.

X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor–insulator–metal strip waveguides,” Opt. Express 18(18), 18945–18959 (2010). [CrossRef] [PubMed]

22.

M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010). [CrossRef] [PubMed]

23.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]

24.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11(2), 321–328 (2011). [CrossRef] [PubMed]

25.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]

26.

M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24(9), 2333–2342 (2007). [CrossRef]

27.

V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]

28.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008). [CrossRef]

29.

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007). [CrossRef] [PubMed]

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 22, 2011
Revised Manuscript: June 11, 2011
Manuscript Accepted: June 14, 2011
Published: October 24, 2011

Citation
Yusheng Bian, Zheng Zheng, Ya Liu, Jiansheng Liu, Jinsong Zhu, and Tao Zhou, "Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement," Opt. Express 19, 22417-22422 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22417


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005). [CrossRef] [PubMed]
  3. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005). [CrossRef]
  4. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  5. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  7. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett.31(23), 3447–3449 (2006). [CrossRef] [PubMed]
  8. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005). [CrossRef]
  9. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100(2), 023901 (2008). [CrossRef] [PubMed]
  10. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express16(8), 5252–5260 (2008). [CrossRef] [PubMed]
  11. T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Fukui, and D. K. Gramotnev, “Numerical and experimental investigation of wedge tip radius effect on wedge plasmons,” J. Appl. Phys.104(3), 033102 (2008). [CrossRef]
  12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  13. D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  14. Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009). [CrossRef] [PubMed]
  15. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010). [CrossRef] [PubMed]
  16. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express18(23), 23756–23762 (2010). [CrossRef] [PubMed]
  17. Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B27(6), 1260–1265 (2010). [CrossRef]
  18. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  19. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides,” IEEE Photon. Technol. Lett.23(13), 884–886 (2011). [CrossRef]
  20. H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010). [CrossRef]
  21. X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor–insulator–metal strip waveguides,” Opt. Express18(18), 18945–18959 (2010). [CrossRef] [PubMed]
  22. M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010). [CrossRef] [PubMed]
  23. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  24. X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011). [CrossRef] [PubMed]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  26. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B24(9), 2333–2342 (2007). [CrossRef]
  27. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  28. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys.10(10), 105018 (2008). [CrossRef]
  29. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express15(19), 12174–12182 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited