OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22437–22442
« Show journal navigation

Two-frequency injection on a multimode vertical-cavity surface-emitting laser

Hong Lin, David W. Pierce, Amod J. Basnet, Ana Quirce, Yu Zhang, and Angel Valle  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22437-22442 (2011)
http://dx.doi.org/10.1364/OE.19.022437


View Full Text Article

Acrobat PDF (803 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied experimentally effects of two-frequency optical injection on a multimode vertical-cavity surface-emitting laser (VCSEL). The injected signal comes from another VCSEL. Polarization switching (PS) with and without frequency locking occurs for relatively small frequency detuning. Outside the regime of polarization switching, the VCSEL demonstrates two types of instabilities. The instability regions and boundaries of PS of each transverse mode are mapped in the parameter plane of frequency detuning versus injected power.

© 2011 OSA

1. Introduction

Similar to EELs, VCSELs are sensitive to injected signal coming from another laser. Optical injection cannot only improve the performance of semiconductor lasers [7

7. P. Gallion, H. Nakajima, G. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett. 22, 626–628 (1995).

9

9. J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett. 8(1), 34–36 (1996). [CrossRef]

], but also induce rich dynamical phenomena in them [10

10. V. Annovazzi-Lodi, S. Donati, and M. Manna, “Chaos and locking in a semiconductor laser due to external injection,” IEEE J. Quantum Electron. 30(7), 1537–1541 (1994). [CrossRef]

12

12. S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88(6), 063901 (2002). [CrossRef] [PubMed]

]. One commonly used configuration in the study of optical injection is termed orthogonal injection [13

13. Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993). [CrossRef]

], in which the polarization of the injected signal is perpendicular to that of the laser that receives the injection. If the polarization of the injected signal is parallel to that of the laser, it is named parallel injection. In VCSELs, optical injection can cause polarization switch, frequency locking, bistability, periodic fluctuations, and chaotic instabilities [6

6. Y. Hong, P. S. Spencer, P. Rees, and K. A. Shore, “Optical injection dynamics of two-mode vertical cavity surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 38(3), 274–278 (2002). [CrossRef]

,13

13. Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993). [CrossRef]

19

19. A. Quirce, J. R. Cuesta, A. Valle, A. Hurtado, L. Pesquera, and M. J. Adams, “Polarization bistability induced by orthogonal optical injection in 1550-nm multimode VCSELs,” IEEE J. Sel. Top. Quantum Electron. (to appear).

]. It can be used to reduce chirp and nonlinearity [20

20. C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003). [CrossRef]

], enhance resonance frequency and modulation bandwidth [21

21. L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 mm VCSELs,” IEEE Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007). [CrossRef]

], achieve mode selection in a multimode VCSEL [6

6. Y. Hong, P. S. Spencer, P. Rees, and K. A. Shore, “Optical injection dynamics of two-mode vertical cavity surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 38(3), 274–278 (2002). [CrossRef]

,17

17. A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, “Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection,” IEEE J. Quantum Electron. 43(4), 322–333 (2007). [CrossRef]

], and to obtain chaos synchronization [22

22. N. Fujiwara, Y. Takiguchi, and J. Ohtsubo, “Observation of the synchronization of chaos in mutually injected vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett. 28(18), 1677–1679 (2003). [CrossRef] [PubMed]

,23

23. Y. Hong, M. W. Lee, P. S. Spencer, and K. A. Shore, “Synchronization of chaos in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett. 29(11), 1215–1217 (2004). [CrossRef] [PubMed]

]. Single-mode VCSEL-by-VCSEL optical injection locking has been recently studied as a first step for obtaining integrated low-cost high-speed communications modules [24

24. A. Hayat, A. Bacou, A. Rissons, J. C. Mollier, V. Iakovlev, A. Sirbu, and E. Kapon, “Long wavelength VCSEL-by-VCSEL optical injection locking,” IEEE Trans. Microw. Theory Tech. 57(7), 1850–1858 (2009). [CrossRef]

].

In this paper we report our experimental study of a multi-transverse mode VCSEL subject to two-frequency optical injection. To our knowledge, this is the first study of optical injection of more than one frequency applied to VCSELs. The two-frequency optical injection is applied by using another multi-transverse mode VCSEL. Thus, we consider partially coherent optical injection in contrast to [26

26. J. Troger, L. Thevenaz, P.-A. Nicati, and P. A. Robert, “Theory and experiment of a single-mode diode laser subject to external light injection from several lasers,” J. Lightwave Technol. 17(4), 629–636 (1999). [CrossRef]

,27

27. N. Al-Hosiny, I. D. Henning, and M. J. Adams, “Secondary locking regions in laser diode subject to optical injection from two lasers,” Electron. Lett. 42(13), 759–760 (2006). [CrossRef]

,29

29. Y.-S. Juan and F.-Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011). [CrossRef]

], where a DFB laser was optically injected by using two different master lasers.

2. Experimental setup

In our experiment, a proton-implanted VCSEL, V1 (receiver), emitting at 847 nm receives a two-frequency injected signal provided by another VCSEL, V2 (transmitter), of the same model, as shown in Fig. 1
Fig. 1 Experimental setup, in which BS stands for nonpolarizing cubic beamsplitter, PBS for polarizing beamsplitter, M1 for nonpolarizing plate beamsplitter, M2 and M3 for mirrors, HWP for half-wave plate, FC for fiber coupler, ISO for optical isolator, NDF for neutral density filter, and PD for photodetector.
. The temperatures of the two VCSELs are stabilized at 24.01 °C and 32.02 °C separately by temperature controllers of same model (Thorlabs TEC2000). Their bias currents are controlled by current drivers (Thorlabs LDC200C) with accuracy 0.001 mA. The dominant polarization of both VCSELs is parallel to the optical table, which is termed X polarization. The polarization perpendicular to the optical table is termed Y polarization. The X polarization of the transmitter is selected by a polarizing beam splitter (PBS) and sent through an optical isolator (ISO). Since the isolator makes the polarization rotated 45°, a half-wave plate (HWP) is placed behind the isolator to rotate the polarization of the transmitted light by another 45°, becoming perpendicular to the optical table. Now the polarization of the injected light is orthogonal to the dominant polarization of the receiver. The injection is sent into the receiver by mirror M2 and a nonpolarizing plate beamsplitter M1. We obtain the optimal alignment when the injection power necessary to induce polarization switching is minimized at the boundary of the PS region.

For the purpose of observation and measurement, the output of V1 is split at M1: the transmitted part is sent to a Fabry-Perot (F-P) spectrum analyzer (FSR 300 GHz) and a charge-coupled device (CCD) camera, the reflected light is sent to a one-meter spectrometer (Jobin Yvon 1000m) and a fast detector (Newport 1580B, 12 GHz) which can be connected to an RF spectrum analyzer (Agilent EXA N9010A, 9 kHz to 26.5 GHz) or a digital oscilloscope (Tektronix DPO 7254, 2.5 GHz). With the aid of another PBS and a half-wave plate, we can detect spectrum and dynamics of each polarization of V1 as well as its power. The power of each polarization is measured with a power meter. We can also set up two fast detectors to observe temporal behaviors of the X and Y polarizations simultaneously. Half of the beam from the transmitter V2 can be sent to the spectrometer or to the F-P spectrum analyzer and the CCD camera. In order to send the light of V2 to the F-P spectrum analyzer, we use a mirror, M3, installed on a translational stage. M3 and the PBS that reflects the output of V2 are carefully aligned to get the frequency structure of V2 at the F-P spectrum analyzer. The frequency (wavelength) detuning is obtained from the F-P spectrum analyzer (spectrometer). The neutral density filter is used to adjust the injection power. The power of the injected signal is measured in front of the collimating lens of V1.

The solitary V1 is dominantly polarized in the X direction, and no polarization switching (PS) is observed within the current range we used in the experiment. From threshold I1=2.51 mA to 3.35 mA, the VCSEL operates in fundamental mode (LP01 mode). The second mode, a higher-order transverse mode, starts lasing from 3.35 mA. Its beam profile indicates that it can be described as a LP11s mode. The frequency difference between the LP11s mode and the fundamental mode is 63 GHz. From 3.50 mA to 4.75 mA, the VCSEL operates with three transverse modes. The third mode is a LP11c mode. The frequency of its X polarization is 15 GHz less than that of the LP11s mode. The fourth transverse mode is on from 4.75 mA. In our experiment, the VCSEL operates in the three-transverse-mode regime. The injected light includes two lasing modes: a fundamental mode and a first-order mode. Their frequency difference is 61 GHz. The spectrum and beam profile of each transverse mode of both receiver (V1) and transmitter (V2) are given in Fig. 2
Fig. 2 Left: Polarization resolved optical spectrum and spatial profile of each transverse mode of V1 for I1=4.513 mA (blue solid: X; pink dashed: Y). Right: Optical spectrum and spatial profile of each mode of the injected signal, for which I2=4.115 mA.
.

We obtained frequency difference between the modes with the same transverse profile for V1 by analyzing polarization resolved optical spectra from the F-P spectrum analyzer. For the two modes with the fundamental profile, one is slightly elliptically polarized and the other is Y polarized. The Y polarized mode is 9 GHz higher than the elliptical polarized. However, since the intensity of the X component of the elliptical polarization is much stronger, the mode is essentially X polarized. The polarization feature of the LP11s profile is similar; it includes an essentially X polarized mode and a nonlasing Y polarized mode that is ~7 GHz away. For the LP11c profile, the difference between the X and Y polarized modes is 7 GHz. For both first-order profiles, the Y polarized mode has the higher frequency.

3. Results

We define frequency detuning, ∆ν, as the frequency difference between the fundamental mode of the injected light, ν2f, and the Y polarization of the fundamental mode of the solitary V1, ν1fY. We change ∆ν by varying I1, the bias current of the receiver. Another control parameter is the injected power. For the results presented below, the bias current of V2 is 4.200 mA. When ∆ν is changed, the injected power, Pinj, is kept constant. The injected power is adjusted by using a neutral density filter (NDF).

4. Conclusion

Acknowledgments

H. Lin acknowledges support from the National Science Foundation under Grant No. PHY-1068789. A. Quirce thanks support from the Spanish Research Council (Consejo Superior de Investigaciones Cientificas (CSIC)) and from Ministerio de Ciencia e Innovación, Spain, under project TEC2009-14581-C02-02. H. Lin also thanks Y. Hong for useful suggestions on some experimental methods.

References and links

1.

C. Wilmsen, H. Temkin, and L. A. Coldren eds., Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, and Applications (Cambridge Univ. Press, 1999).

2.

C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 57(3), 218–220 (1990). [CrossRef]

3.

K. H. Hahn, M. R. Tan, Y. M. Houng, and S. Y. Wang, “Large area multi-transverse mode VCSELs for modal noise reduction in multimode fiber systems,” Electron. Lett. 29(16), 1482–1483 (1993). [CrossRef]

4.

M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers,” Phys. Rev. A 68(3), 033822 (2003). [CrossRef]

5.

J. Martin-Regalado, S. Balle, and M. San Miguel, “Polarization and transverse-mode dynamics of gain-guided vertical-cavity surface-emitting lasers,” Opt. Lett. 22(7), 460–462 (1997). [CrossRef] [PubMed]

6.

Y. Hong, P. S. Spencer, P. Rees, and K. A. Shore, “Optical injection dynamics of two-mode vertical cavity surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 38(3), 274–278 (2002). [CrossRef]

7.

P. Gallion, H. Nakajima, G. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett. 22, 626–628 (1995).

8.

K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser diode light injection,” IEEE J. Quantum Electron. 18(10), 1669–1674 (1982). [CrossRef]

9.

J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett. 8(1), 34–36 (1996). [CrossRef]

10.

V. Annovazzi-Lodi, S. Donati, and M. Manna, “Chaos and locking in a semiconductor laser due to external injection,” IEEE J. Quantum Electron. 30(7), 1537–1541 (1994). [CrossRef]

11.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A 51(5), 4181–4185 (1995). [CrossRef] [PubMed]

12.

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88(6), 063901 (2002). [CrossRef] [PubMed]

13.

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993). [CrossRef]

14.

H. Li, T. L. Lucas, J. G. McInerney, M. W. Wright, and R. A. Morgan, “Injection locking dynamics of vertical cavity semiconductor lasers under conventional and phase conjugate injection,” IEEE J. Quantum Electron. 32(2), 227–235 (1996). [CrossRef]

15.

Y. Hong, P. S. Spencer, S. Bandyoadhyay, P. Rees, and K. A. Shore, “Polarisation-resolved chaos and instabilities in a vertical cavity surface emitting laser subject to optical injection,” Opt. Commun. 216(1-3), 185–189 (2003). [CrossRef]

16.

J. BuesaAltes, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 42(2), 198–207 (2006). [CrossRef]

17.

A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, “Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection,” IEEE J. Quantum Electron. 43(4), 322–333 (2007). [CrossRef]

18.

P. Perez, A. Quirce, L. Pesquera, and A. Valle, “Polarization-resolved nonlinear dynamics induced by orthogonal optical injection in long-wavelength VCSELs,” IEEE J. Quantum Electron. (to appear).

19.

A. Quirce, J. R. Cuesta, A. Valle, A. Hurtado, L. Pesquera, and M. J. Adams, “Polarization bistability induced by orthogonal optical injection in 1550-nm multimode VCSELs,” IEEE J. Sel. Top. Quantum Electron. (to appear).

20.

C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003). [CrossRef]

21.

L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 mm VCSELs,” IEEE Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007). [CrossRef]

22.

N. Fujiwara, Y. Takiguchi, and J. Ohtsubo, “Observation of the synchronization of chaos in mutually injected vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett. 28(18), 1677–1679 (2003). [CrossRef] [PubMed]

23.

Y. Hong, M. W. Lee, P. S. Spencer, and K. A. Shore, “Synchronization of chaos in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett. 29(11), 1215–1217 (2004). [CrossRef] [PubMed]

24.

A. Hayat, A. Bacou, A. Rissons, J. C. Mollier, V. Iakovlev, A. Sirbu, and E. Kapon, “Long wavelength VCSEL-by-VCSEL optical injection locking,” IEEE Trans. Microw. Theory Tech. 57(7), 1850–1858 (2009). [CrossRef]

25.

L. Li and K. Petermann, “Small-signal analysis of optical-frequency conversion in an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 30(1), 43–48 (1994). [CrossRef]

26.

J. Troger, L. Thevenaz, P.-A. Nicati, and P. A. Robert, “Theory and experiment of a single-mode diode laser subject to external light injection from several lasers,” J. Lightwave Technol. 17(4), 629–636 (1999). [CrossRef]

27.

N. Al-Hosiny, I. D. Henning, and M. J. Adams, “Secondary locking regions in laser diode subject to optical injection from two lasers,” Electron. Lett. 42(13), 759–760 (2006). [CrossRef]

28.

X.-Q. Qi and J.-M. Liu, “Dynamics scenarios of dual-beam optically injected semiconductor lasers,” IEEE J. Quantum Electron. 47(6), 762–769 (2011). [CrossRef]

29.

Y.-S. Juan and F.-Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011). [CrossRef]

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(230.5440) Optical devices : Polarization-selective devices
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 13, 2011
Revised Manuscript: August 31, 2011
Manuscript Accepted: September 6, 2011
Published: October 24, 2011

Citation
Hong Lin, David W. Pierce, Amod J. Basnet, Ana Quirce, Yu Zhang, and Angel Valle, "Two-frequency injection on a multimode vertical-cavity surface-emitting laser," Opt. Express 19, 22437-22442 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22437


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Wilmsen, H. Temkin, and L. A. Coldren eds., Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, and Applications (Cambridge Univ. Press, 1999).
  2. C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.57(3), 218–220 (1990). [CrossRef]
  3. K. H. Hahn, M. R. Tan, Y. M. Houng, and S. Y. Wang, “Large area multi-transverse mode VCSELs for modal noise reduction in multimode fiber systems,” Electron. Lett.29(16), 1482–1483 (1993). [CrossRef]
  4. M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers,” Phys. Rev. A68(3), 033822 (2003). [CrossRef]
  5. J. Martin-Regalado, S. Balle, and M. San Miguel, “Polarization and transverse-mode dynamics of gain-guided vertical-cavity surface-emitting lasers,” Opt. Lett.22(7), 460–462 (1997). [CrossRef] [PubMed]
  6. Y. Hong, P. S. Spencer, P. Rees, and K. A. Shore, “Optical injection dynamics of two-mode vertical cavity surface-emitting semiconductor lasers,” IEEE J. Quantum Electron.38(3), 274–278 (2002). [CrossRef]
  7. P. Gallion, H. Nakajima, G. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett.22, 626–628 (1995).
  8. K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser diode light injection,” IEEE J. Quantum Electron.18(10), 1669–1674 (1982). [CrossRef]
  9. J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett.8(1), 34–36 (1996). [CrossRef]
  10. V. Annovazzi-Lodi, S. Donati, and M. Manna, “Chaos and locking in a semiconductor laser due to external injection,” IEEE J. Quantum Electron.30(7), 1537–1541 (1994). [CrossRef]
  11. T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A51(5), 4181–4185 (1995). [CrossRef] [PubMed]
  12. S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett.88(6), 063901 (2002). [CrossRef] [PubMed]
  13. Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.63(22), 2999–3001 (1993). [CrossRef]
  14. H. Li, T. L. Lucas, J. G. McInerney, M. W. Wright, and R. A. Morgan, “Injection locking dynamics of vertical cavity semiconductor lasers under conventional and phase conjugate injection,” IEEE J. Quantum Electron.32(2), 227–235 (1996). [CrossRef]
  15. Y. Hong, P. S. Spencer, S. Bandyoadhyay, P. Rees, and K. A. Shore, “Polarisation-resolved chaos and instabilities in a vertical cavity surface emitting laser subject to optical injection,” Opt. Commun.216(1-3), 185–189 (2003). [CrossRef]
  16. J. BuesaAltes, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.42(2), 198–207 (2006). [CrossRef]
  17. A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, “Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection,” IEEE J. Quantum Electron.43(4), 322–333 (2007). [CrossRef]
  18. P. Perez, A. Quirce, L. Pesquera, and A. Valle, “Polarization-resolved nonlinear dynamics induced by orthogonal optical injection in long-wavelength VCSELs,” IEEE J. Quantum Electron. (to appear).
  19. A. Quirce, J. R. Cuesta, A. Valle, A. Hurtado, L. Pesquera, and M. J. Adams, “Polarization bistability induced by orthogonal optical injection in 1550-nm multimode VCSELs,” IEEE J. Sel. Top. Quantum Electron. (to appear).
  20. C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron.9(5), 1386–1393 (2003). [CrossRef]
  21. L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 mm VCSELs,” IEEE Sel. Top. Quantum Electron.13(5), 1200–1208 (2007). [CrossRef]
  22. N. Fujiwara, Y. Takiguchi, and J. Ohtsubo, “Observation of the synchronization of chaos in mutually injected vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett.28(18), 1677–1679 (2003). [CrossRef] [PubMed]
  23. Y. Hong, M. W. Lee, P. S. Spencer, and K. A. Shore, “Synchronization of chaos in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett.29(11), 1215–1217 (2004). [CrossRef] [PubMed]
  24. A. Hayat, A. Bacou, A. Rissons, J. C. Mollier, V. Iakovlev, A. Sirbu, and E. Kapon, “Long wavelength VCSEL-by-VCSEL optical injection locking,” IEEE Trans. Microw. Theory Tech.57(7), 1850–1858 (2009). [CrossRef]
  25. L. Li and K. Petermann, “Small-signal analysis of optical-frequency conversion in an injection-locked semiconductor laser,” IEEE J. Quantum Electron.30(1), 43–48 (1994). [CrossRef]
  26. J. Troger, L. Thevenaz, P.-A. Nicati, and P. A. Robert, “Theory and experiment of a single-mode diode laser subject to external light injection from several lasers,” J. Lightwave Technol.17(4), 629–636 (1999). [CrossRef]
  27. N. Al-Hosiny, I. D. Henning, and M. J. Adams, “Secondary locking regions in laser diode subject to optical injection from two lasers,” Electron. Lett.42(13), 759–760 (2006). [CrossRef]
  28. X.-Q. Qi and J.-M. Liu, “Dynamics scenarios of dual-beam optically injected semiconductor lasers,” IEEE J. Quantum Electron.47(6), 762–769 (2011). [CrossRef]
  29. Y.-S. Juan and F.-Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J.3(4), 644–650 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited