## Tuning and stability of a singly resonant continuous-wave optical parametric oscillator close to degeneracy |

Optics Express, Vol. 19, Issue 23, pp. 22515-22527 (2011)

http://dx.doi.org/10.1364/OE.19.022515

Acrobat PDF (1946 KB)

### Abstract

Wavelength tuning and stability characteristics of a singly resonant continuous-wave optical parametric oscillator (cw OPO) in the proximity of signal-idler degeneracy have been studied. The OPO is made singly resonant by using a Bragg grating as a spectral filter in the OPO cavity. The signal-idler frequency difference can be tuned from 0.5 to 7 THz, which makes the OPO suitable for cw THz generation by optical heterodyning. The operation of the OPO within this singly-resonant regime is characterized by a strong self-stabilization effect. A gradual transition to an unstable, doubly-resonant regime is observed for a signal-idler detuning smaller than ~0.5 THz.

© 2011 OSA

## 1. Introduction

_{s}) and idler (ν

_{i}) frequencies are nearly equal to each other and half of the pump frequency (ν

_{p}), have some interesting properties that can be advantageous in various applications. The parametric gain bandwidth of a near-degenerate OPO is typically large, which is useful for generation of short mid-infrared pulses and mid-infrared supercontinua [1

1. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. **36**(12), 2275–2277 (2011). [CrossRef] [PubMed]

2. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. **32**(10), 1284–1286 (2007). [CrossRef] [PubMed]

3. M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. **27**(16), 1439–1441 (2002). [CrossRef] [PubMed]

4. S. T. Yang, R. C. Eckardt, and R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. Am. B **10**(9), 1684–1695 (1993). [CrossRef]

5. A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. **119**(1-2), 256–264 (1995). [CrossRef]

5. A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. **119**(1-2), 256–264 (1995). [CrossRef]

6. M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal-idler degeneracy,” Opt. Lett. **36**(4), 475–477 (2011). [CrossRef] [PubMed]

7. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO_{3} optical parametric oscillator with a volume Bragg grating,” Opt. Lett. **32**(20), 2996–2998 (2007). [CrossRef] [PubMed]

8. B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. **34**(4), 449–451 (2009). [CrossRef] [PubMed]

6. M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal-idler degeneracy,” Opt. Lett. **36**(4), 475–477 (2011). [CrossRef] [PubMed]

## 2. Experimental setup

6. M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal-idler degeneracy,” Opt. Lett. **36**(4), 475–477 (2011). [CrossRef] [PubMed]

_{s}> ν

_{i}.

^{2}radius of the waist of the resonant beam in the nonlinear crystal is 50 µm. The spot radius at the Bragg grating is 370 µm. The OPO is pumped with a wavelength-tunable cw Ti:sapphire laser (MBR-PS, Coherent Inc., USA) at ~800 nm, which sets the degeneracy wavelength to about 1.6 µm. The pump beam, which passes the nonlinear crystal once, is mode matched to the signal beam so that the confocal parameters of the two beams are equal to each other. The nonlinear crystal is a 50-mm long, 0.5-mm thick, 5% MgO-doped periodically poled lithium niobate, MgO:PPLN (HC Photonics Corp., Taiwan). It has ten adjacent poling periods, three of which (Λ = 20.3, 20.5, and 20.7 µm) were used in the work reported here. The end facets of the crystal are antireflection coated for the pump, signal, and idler. The residual reflectivity of a coated facet is <0.25% for the wavelength resonating in the OPO cavity. Temperature of the crystal is controlled with 20 mK stability using Peltier elements. The OPO cavity is not thermally stabilized, but it is shielded from air fluctuations by a hardboard cover.

## 3. Wavelength tuning close to degeneracy

### 3.1 Tuning range

_{p}, and by synchronously adjusting the temperature of the nonlinear crystal so that the phase matching condition remains fulfilled [6

**36**(4), 475–477 (2011). [CrossRef] [PubMed]

_{i}= ν

_{p}–ν

_{s}) because the signal wavelength is fixed by the grating. Figure 2a demonstrates this tuning method in terms of the signal-idler frequency difference ν

_{s}–ν

_{i}and as a function of crystal temperature. The phase matching relationship between the pump wavelength and crystal temperature is plotted in Fig. 2b.

_{s}–ν

_{i}can be tuned to any value between 0.5 and 7 THz. At the low-frequency side, the tuning range is limited by spectral instabilities that arise due to the transition from singly to doubly resonant OPO. This interesting region, which is indicated in gray in Fig. 2a, is discussed in more detail in Section 4. The maximum frequency difference that our present setup can produce is 7 THz. This is not a fundamental limit but a consequence of nonoptimized cavity mirrors that prevent us from obtaining sufficient pump power into the OPO crystal at λ

_{p}> 808 nm.

_{s}–ν

_{i}over 20 GHz is obtained at each temperature set point by scanning the pump laser. The maximum total tuning that can be done by mere pump tuning is approximately 60 GHz, depending on the width of the parametric gain curve at the operating point, i.e., depending on the pump level and detuning from degeneracy [6

**36**(4), 475–477 (2011). [CrossRef] [PubMed]

### 3.2 Output power

11. S. T. Lin, Y. Y. Lin, T. D. Wang, and Y. C. Huang, “Thermal waveguide OPO,” Opt. Express **18**(2), 1323–1329 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-2-1323. [CrossRef] [PubMed]

12. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B **94**(3), 411–427 (2009). [CrossRef]

13. A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A.-M. Michel, and M. Péalat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett. **35**(21), 3667–3669 (2010). [CrossRef] [PubMed]

11. S. T. Lin, Y. Y. Lin, T. D. Wang, and Y. C. Huang, “Thermal waveguide OPO,” Opt. Express **18**(2), 1323–1329 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-2-1323. [CrossRef] [PubMed]

12. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B **94**(3), 411–427 (2009). [CrossRef]

14. A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B **85**(2-3), 181–184 (2006). [CrossRef]

### 3.3 Thermal dephasing and self-locking

15. P. L. Hansen and P. Buchhave, “Thermal self-frequency locking of a doubly resonant optical parametric oscillator,” Opt. Lett. **22**(14), 1074–1076 (1997). [CrossRef] [PubMed]

18. J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. **12**(8), 451–460 (2001). [CrossRef]

12. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B **94**(3), 411–427 (2009). [CrossRef]

17. A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS_{2} optical parametric oscillators,” J. Opt. Soc. Am. B **16**(9), 1481–1498 (1999). [CrossRef]

19. N. P. Barnes and J. A. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B **12**(1), 124–131 (1995). [CrossRef]

16. T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B **66**(6), 719–725 (1998). [CrossRef]

18. J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. **12**(8), 451–460 (2001). [CrossRef]

20. T. Ikegami, S. Slyusarev, and S.-I. Ohshimal, “Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator,” Opt. Commun. **184**(1-4), 13–17 (2000). [CrossRef]

## 4. Stability characteristics close to degeneracy

### 4.1 Transition between the singly and doubly resonant OPO

**36**(4), 475–477 (2011). [CrossRef] [PubMed]

_{s}–ν

_{i}= 0.15 THz and ν

_{s}–ν

_{i}< 0.1 THz, respectively. In Fig. 6b, the output power varies between a few discrete states but does not go to zero. This behavior is similar to that reported earlier by Yang

*et al*., and indicates operation in a region where the nominally nonresonant idler wave becomes weakly resonant [4

4. S. T. Yang, R. C. Eckardt, and R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. Am. B **10**(9), 1684–1695 (1993). [CrossRef]

_{s}–ν

_{i}< 0.1 THz. This is evidenced in Fig. 6c (left panel) by the sections where the OPO output power drops to zero. Mode hopping was observed also in this case, but the rate of hopping was such that only one or few peaks were observed during a single 12 ms long scan of the FPI (Fig. 6c, right panel).

### 4.2 Long-term stability

_{s}–ν

_{i}= 0.5 and 7 THz is the most interesting one from the point of view of cw THz generation. We characterized the long term stability of the OPO at ν

_{s}–ν

_{i}= 2.6 THz. The measured power and frequency stability of the signal and idler are presented in Fig. 8 . Stability of the output power is very good; the standard deviation calculated from the 10-min. measurement shown in Fig. 8 is 0.4%, which is almost equal to the short-term standard deviation calculated from Fig. 6a. The OPO output frequencies, on the other hand, show a linear drift. The drifts of the signal and idler frequencies were observed to be almost equal (20 MHz/min) and to the same direction with each other (Fig. 8). If it were only the OPO cavity that drifted, the drift rates should be the same but the direction of the drift should be the opposite for the signal and idler frequencies since ν

_{p}= ν

_{s}+ ν

_{i}. The measurement hence indicates that the pump frequency has drifted to the same direction but twice as fast as the signal frequency. This can be explained, e.g., by a frequency drift caused by thermal expansion of the optical cavities due to a change in the laboratory temperature. The relative frequency drift Δν/ν of the laser or OPO is equal to the relative change Δ

*L*/

*L*of the cavity length

*L*. This means that, if the thermal expansion of the two cavities were equally large, the absolute frequency drift of the pump should be twice as large as that of the signal, simply owing to ν

_{p}~2ν

_{s.}

4. S. T. Yang, R. C. Eckardt, and R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. Am. B **10**(9), 1684–1695 (1993). [CrossRef]

22. S. Schiller, J. Schoser, C. Braxmaier, K. Bencheikh, U. Strössner, A. Peters, J. Mlynek, and P. De Natale, “Single-frequency CW optical parametric oscillators: devices and applications,” in *Proc. Int. Conf. Laser Spectroscopy XIV*, R. Blatt, ed. (World Scientific Publishing, Singapore, 1999), pp. 217–226.

_{s}–ν

_{i}= 2.6 THz, the changes in the pump frequency are seen as 200 times larger changes in the phase-matched signal frequency, as can be calculated [6

**36**(4), 475–477 (2011). [CrossRef] [PubMed]

9. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO_{3},” Appl. Phys. B **91**(2), 343–348 (2008). [CrossRef]

**36**(4), 475–477 (2011). [CrossRef] [PubMed]

**36**(4), 475–477 (2011). [CrossRef] [PubMed]

21. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. **44**(1), 81–89 (2008). [CrossRef]

16. T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B **66**(6), 719–725 (1998). [CrossRef]

18. J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. **12**(8), 451–460 (2001). [CrossRef]

20. T. Ikegami, S. Slyusarev, and S.-I. Ohshimal, “Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator,” Opt. Commun. **184**(1-4), 13–17 (2000). [CrossRef]

20. T. Ikegami, S. Slyusarev, and S.-I. Ohshimal, “Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator,” Opt. Commun. **184**(1-4), 13–17 (2000). [CrossRef]

**94**(3), 411–427 (2009). [CrossRef]

**94**(3), 411–427 (2009). [CrossRef]

17. A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS_{2} optical parametric oscillators,” J. Opt. Soc. Am. B **16**(9), 1481–1498 (1999). [CrossRef]

**12**(8), 451–460 (2001). [CrossRef]

23. T. Waritanant and T.-y. Chung, “Influence of minute self-absorption of a volume Bragg grating used as a laser mirror,” IEEE J. Quantum Electron. **47**(3), 390–397 (2011). [CrossRef]

^{−3}cm

^{−1}). This leads to a maximum local temperature increase of approximately 1 to 2 K in the grating at the maximum power level of the OPO. The temperature coefficient of the frequency of the grating peak reflectivity is 1.4 GHz/K [24

24. M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt. **50**(4), A1–A10 (2011). [CrossRef] [PubMed]

23. T. Waritanant and T.-y. Chung, “Influence of minute self-absorption of a volume Bragg grating used as a laser mirror,” IEEE J. Quantum Electron. **47**(3), 390–397 (2011). [CrossRef]

## 5. Conclusion

## Acknowledgments

## References and links

1. | K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. |

2. | J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. |

3. | M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. |

4. | S. T. Yang, R. C. Eckardt, and R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. Am. B |

5. | A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. |

6. | M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal-idler degeneracy,” Opt. Lett. |

7. | J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO |

8. | B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. |

9. | O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO |

10. | O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO |

11. | S. T. Lin, Y. Y. Lin, T. D. Wang, and Y. C. Huang, “Thermal waveguide OPO,” Opt. Express |

12. | M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B |

13. | A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A.-M. Michel, and M. Péalat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett. |

14. | A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B |

15. | P. L. Hansen and P. Buchhave, “Thermal self-frequency locking of a doubly resonant optical parametric oscillator,” Opt. Lett. |

16. | T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B |

17. | A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS |

18. | J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. |

19. | N. P. Barnes and J. A. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B |

20. | T. Ikegami, S. Slyusarev, and S.-I. Ohshimal, “Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator,” Opt. Commun. |

21. | J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. |

22. | S. Schiller, J. Schoser, C. Braxmaier, K. Bencheikh, U. Strössner, A. Peters, J. Mlynek, and P. De Natale, “Single-frequency CW optical parametric oscillators: devices and applications,” in |

23. | T. Waritanant and T.-y. Chung, “Influence of minute self-absorption of a volume Bragg grating used as a laser mirror,” IEEE J. Quantum Electron. |

24. | M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt. |

25. | S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Thermal limitations of volume Bragg gratings when used in lasers for spectral control,” in |

**OCIS Codes**

(140.6810) Lasers and laser optics : Thermal effects

(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

**ToC Category:**

Lasers, Mode Locking and Parametric Oscillation

**History**

Original Manuscript: August 31, 2011

Revised Manuscript: October 5, 2011

Manuscript Accepted: October 5, 2011

Published: October 25, 2011

**Virtual Issues**

Nonlinear Optics (2011) *Optical Materials Express*

**Citation**

Markku Vainio, Cécile Ozanam, Ville Ulvila, and Lauri Halonen, "Tuning and stability of a singly resonant continuous-wave optical parametric oscillator close to degeneracy," Opt. Express **19**, 22515-22527 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22515

Sort: Year | Journal | Reset

### References

- K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett.36(12), 2275–2277 (2011). [CrossRef] [PubMed]
- J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett.32(10), 1284–1286 (2007). [CrossRef] [PubMed]
- M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett.27(16), 1439–1441 (2002). [CrossRef] [PubMed]
- S. T. Yang, R. C. Eckardt, and R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. Am. B10(9), 1684–1695 (1993). [CrossRef]
- A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun.119(1-2), 256–264 (1995). [CrossRef]
- M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal-idler degeneracy,” Opt. Lett.36(4), 475–477 (2011). [CrossRef] [PubMed]
- J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007). [CrossRef] [PubMed]
- B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett.34(4), 449–451 (2009). [CrossRef] [PubMed]
- O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008). [CrossRef]
- O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B86(1), 111–115 (2006). [CrossRef]
- S. T. Lin, Y. Y. Lin, T. D. Wang, and Y. C. Huang, “Thermal waveguide OPO,” Opt. Express18(2), 1323–1329 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-2-1323 . [CrossRef] [PubMed]
- M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B94(3), 411–427 (2009). [CrossRef]
- A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A.-M. Michel, and M. Péalat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett.35(21), 3667–3669 (2010). [CrossRef] [PubMed]
- A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B85(2-3), 181–184 (2006). [CrossRef]
- P. L. Hansen and P. Buchhave, “Thermal self-frequency locking of a doubly resonant optical parametric oscillator,” Opt. Lett.22(14), 1074–1076 (1997). [CrossRef] [PubMed]
- T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B66(6), 719–725 (1998). [CrossRef]
- A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B16(9), 1481–1498 (1999). [CrossRef]
- J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron.12(8), 451–460 (2001). [CrossRef]
- N. P. Barnes and J. A. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B12(1), 124–131 (1995). [CrossRef]
- T. Ikegami, S. Slyusarev, and S.-I. Ohshimal, “Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator,” Opt. Commun.184(1-4), 13–17 (2000). [CrossRef]
- J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron.44(1), 81–89 (2008). [CrossRef]
- S. Schiller, J. Schoser, C. Braxmaier, K. Bencheikh, U. Strössner, A. Peters, J. Mlynek, and P. De Natale, “Single-frequency CW optical parametric oscillators: devices and applications,” in Proc. Int. Conf. Laser Spectroscopy XIV, R. Blatt, ed. (World Scientific Publishing, Singapore, 1999), pp. 217–226.
- T. Waritanant and T.-y. Chung, “Influence of minute self-absorption of a volume Bragg grating used as a laser mirror,” IEEE J. Quantum Electron.47(3), 390–397 (2011). [CrossRef]
- M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt.50(4), A1–A10 (2011). [CrossRef] [PubMed]
- S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Thermal limitations of volume Bragg gratings when used in lasers for spectral control,” in Proceedings of 2nd EOS Topical Meeting on Lasers ETML'11 (European Optical Society, 2011), paper 4609.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.