## Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing |

Optics Express, Vol. 19, Issue 23, pp. 22698-22708 (2011)

http://dx.doi.org/10.1364/OE.19.022698

Acrobat PDF (1237 KB)

### Abstract

We present a simple technique to reduce the emission rate of higher-order photon events from pulsed spontaneous parametric down-conversion. The technique uses extra-cavity control over a mode locked ultrafast laser to simultaneously increase repetition rate and reduce the energy of each pulse from the pump beam. We apply our scheme to a photonic quantum gate, showing improvements in the non-classical interference visibility for 2-photon and 4-photon experiments, and in the quantum-gate fidelity and entangled state production in the 2-photon case.

© 2011 OSA

## 1. Introduction

1. B. Lounis and M. Orrit, “Single-photon sources,”Rep. Prog. Phys. **68**, 1129 (2005). [CrossRef]

2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature **409**, 46–52 (2001). [CrossRef] [PubMed]

3. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature **406**, 968–970 (2000). [CrossRef] [PubMed]

4. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature **419**, 594–597 (2002). [CrossRef] [PubMed]

5. K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggeredat telecommunications wavelength,” Appl. Phys. Lett. **98**, 083105 (2011). [CrossRef]

6. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based ona quantum dot in a photonic nanowire,” Nat. Photonics **4**, 174–177(2010). [CrossRef]

7. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D **18**, 191–196 (2002). [CrossRef]

8. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. **85**, 290–293 (2000). [CrossRef] [PubMed]

9. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science **303**, 1992–1994 (2004). [CrossRef] [PubMed]

10. C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. **92**, 213601 (2004). [CrossRef] [PubMed]

11. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature **407**, 491–493 (2000). [CrossRef] [PubMed]

12. R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Götzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. **104**, 123605 (2010). [CrossRef] [PubMed]

13. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon fock state,” Phys. Rev. Lett. **87**, 050402 (2001). [CrossRef] [PubMed]

14. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. **246**, 545–550 (2005). [CrossRef]

15. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. **93**, 093601 (2004). [CrossRef] [PubMed]

16. A. B. U’Ren, Y. Jeronimo-Moreno, and H. Garcia-Gracia, “Generation of fourier-transform-limited heralded single photons,” Phys. Rev. A **75**, 023810 (2007). [CrossRef]

17. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A **64**, 063815 (2001). [CrossRef]

18. A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett. **97**, 223602 (2006). [CrossRef]

19. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express **15**, 7940–7949 (2007). [CrossRef] [PubMed]

20. A. Brańczyk, A. Fedrizzi, T. Stace, T. Ralph, and A. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express **19**, 55–65 (2011). [CrossRef]

21. H. Weinfurter and M. Żukowski, “Four-photon entanglement from down-conversion,” Phys. Rev. A **64**, 010102 (2001). [CrossRef]

22. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. **85**, 1330–1333 (2000). [CrossRef] [PubMed]

24. M. Barbieri, T. J. Weinhold, B. P. Lanyon, A. Gilchrist, K. J. Resch, M. P. Almeida, and A. G. White, “Parametric downconversion and optical quantum gates: two’s company, four’s a crowd,” J. Mod. Opt. **56**, 209 – 214 (2009). [CrossRef]

*spatial*multiplexing scheme suggested in [25

25. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A **66** (2002). [CrossRef]

26. T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. **58**, 276–287 (2011). [CrossRef]

27. X.-s. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A **83**, 043814 (2011). [CrossRef]

## 2. Pump repetition rate and higher-order terms

*a*

_{1}and

*b*

_{1}respectively; and

*ξ*is the overall efficiency parameter, which represents the non-linear interaction strength and carries information about spectral properties of the pump laser. Furthermore,

*ξ*is linearly proportional to the electric field amplitude of each pump pulse. The output state of the down-conversion process can be written as [29

29. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. **79**, 135–174 (2007). [CrossRef]

*λ*=

*ξ τ*, where

*τ*is the interaction time inside the down-conversion medium. From Eq. 2 we see that the probability of creating

*n*photon pairs per pulse is given by Thus the joint photodetection rate per second for modes

*a*

_{1}and

*b*

_{1}using so-called bucket detectors, i.e. photodetectors without photon-number resolution is where

*R*is the repetition rate of the laser and

*η*is the product of the detector efficiency and the optical efficiency to include optical losses and optical coupling [29

29. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. **79**, 135–174 (2007). [CrossRef]

*n*=1) emission over the double pair (

*n*=2) emission, If we now halve the power of each pump pulse, such that

*R*→ 2

*R*, the joint photodetection rate becomes Note that the rate of generating just one pair of photons per second is not affected, while events

*n*≥ 2 are reduced by a factor of 2

^{n−1}. In fact, an equivalent argument can be made for an arbitrary multiple increase in repetition rate,

*m*, such that the generic formula for this scheme becomes, and the signal to noise ratio becomes

*independent*sources where two passes through the same down-conversion crystal (or equivalently two separate crystals) are used to produce independent photon pairs, see Fig. 1a). Since the mathematical argument is equivalent to above we omit it here and direct the interested reader to the appendix.

## 3. Application in linear optical quantum computing

*total*available pump power by a factor of 2 due to the probabilistic recombination of the delayed and the original pump mode. This tradeoff is acceptable since multi-photon experiments relying on SPDC in bulk crystals already have to operate at reduced power to minimise noise. Modern SPDC sources based on periodically poled crystals only require a few hundred microwatt of pump power [30

30. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. **105**, 253601 (2010). [CrossRef]

*P*(

*n*=2)/

*P*(

*n*=1), as a function of the SPDC pump power for pumps at 76 MHz and 152 MHz. These results were obtained using spatially multiplexed single-photon avalanche diodes in order to count the number of photons in each down-conversion mode. The results show that in both pump regimes the ratio of 4-photon to 2-photon events varies linearly with pump pulse power as predicted by Eq. 6. However, there is a clear difference between the inclination of the two curves due to a decrease in the power available

*per*pump pulse for the pump beam at 152 MHz compared to that at 76 MHz. The calculated slopes of both curves have a ratio of 2.12 ± 0.07, which is consistent with the fact that emission of single-photons per down-conversion mode is not altered in this scheme.

24. M. Barbieri, T. J. Weinhold, B. P. Lanyon, A. Gilchrist, K. J. Resch, M. P. Almeida, and A. G. White, “Parametric downconversion and optical quantum gates: two’s company, four’s a crowd,” J. Mod. Opt. **56**, 209 – 214 (2009). [CrossRef]

31. N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. **95**, 210504 (2005). [CrossRef] [PubMed]

*η*=0 and

_{H}*η*=2/3 for horizontally and vertically polarised light respectively. Each input photon encodes a polarization qubit in the horizontal and vertical (|

_{V}*H*〉,|

*V*〉) basis. Successful operation of the gate are post-selected by the detection of at least one photon in each output mode, which occurs non-deterministically with a probability of 1/9. Conditioned on post-selection the gate acts to induce a non-linear phase shift when both input states are vertically polarized i.e. |

*VV*〉 → –|

*VV*〉. Furthermore, the gate is entangling and produces the maximally entangled state |

*HD*〉 + |

*VA*〉 for an input |

*DD*〉.

*t*, is reduced (and hence their temporal indistinguishability is reduced) the bunching effect is seen as a drop in coincident photon detection at the two output modes. This is known as Hong-Ou-Mandel (HOM) [32

32. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. **59**, 2044–2046 (1987). [CrossRef] [PubMed]

*V*=(

*C*–

_{dist}*C*)/

_{indist}*C*, where

_{dist}*C*and

_{dist}*C*are the coincidence counts at the output of the beam splitter for distinguishable and indistinguishable photon inputs respectively. Non-single photon inputs increase the likelihood of photons being detected in both output modes leading to spurious coincidence events. Therefore the quality of HOM interference degrades as the ratio of multi-photon events to single-photon events from SPDC increases, see Eq. 5. In particular, the visibility of HOM interference is a direct measure of photon-number purity once spatio-temporal mode mismatch is accounted for [33

_{indist}33. A. Brańczyk, T. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded fock states using parametric down-conversion,” N. J. Phys. **12**, 063001 (2010). [CrossRef]

*η*=2/3. Fig. 4 shows how our doubling scheme reduces the detrimental effect on the visibility of non-classical interference while increasing the pump power. We show this effect for two scenarios: i) for input photons produced by a single down-conversion crystal shown in Fig. 3 a) and ii) photons produced by two down-conversion sources (independent photon inputs) shown in Fig. 3 b). In the latter scenario the signal photon from each pass of the crystal is heralded with the detection of the corresponding idler photon. The experimental data is compared to a numeric model created with the Matlab

_{V}*quantum optics toolbox*by Sze M. Tan [34] and associated linear optical quantum computing tools written by T. Jennewein, see [26

26. T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. **58**, 276–287 (2011). [CrossRef]

26. T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. **58**, 276–287 (2011). [CrossRef]

*n*≥ 1. The theoretical plots in all figures were based on this Matlab model, assuming imperfect non-number resolving detectors with a nominal efficiency of 60% and a measured PPBS reflectivity of

*η*=0.682 ± 0.002.

_{v}35. J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. **93** (2004). [PubMed]

*DD*〉 and make projective measurements on each output photon with the over complete set {|

*H*〉,|

*V*〉,|

*D*〉,|

*A*〉,|

*R*〉,|

*L*〉}, where

*DD*〉 gives the maximally entangled output state |

*HD*〉 + |

*VA*〉 and, as such, is most affected by higher-order photon emissions as shown in [23, 24

24. M. Barbieri, T. J. Weinhold, B. P. Lanyon, A. Gilchrist, K. J. Resch, M. P. Almeida, and A. G. White, “Parametric downconversion and optical quantum gates: two’s company, four’s a crowd,” J. Mod. Opt. **56**, 209 – 214 (2009). [CrossRef]

*ρ*, is reconstructed using a maximum likelihood algorithm and compared to the ideal state,

*ρ*. We chose the measures of state fidelity, given by, and tangle (concurrence squared) as a test for entangled state quality. Figure. 5a) shows the results. We observe a stark reduction in the rate of state degradation, whilst increasing source pump power, as we switch from a 76 MHz to 152 MHz pump repetition rate. The results show the effect for a dependent downconversion source where the goal is to reduce the number of

_{ideal}*n*≥ 2 events per down-conversion mode.

*process*tomography as detailed in Ref. [35

35. J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. **93** (2004). [PubMed]

*X*, to that of an ideal process for a CZ gate,

*X*. Figure 5 b) shows the effect of increasing laser power on process fidelity, defined equivalently to Eq. 9.

_{ideal}*R*= 1/Δ

*t*, where Δ

*t*is the coincidence time window which, in turn, is dominated by the combined electronic jitter of single photodetectors and the coincidence counting logic. Commercial silicon avalanche photon diodes exhibit a timing jitter of typically 400 ps, which can be matched by commercial counting electronics based on field-programmable gate arrays (FPGA). An experiment using these detectors can thus in principle resolve between two down-conversion events created by laser pulses at a maximum repetition rate of 1 GHz, which can be reached with the extra-cavity control detailed in this paper. This is well worth considering for SPDC experiments relying on the widely used 76 MHz laser we used for our work. However, it should be pointed out that femtosecond Ti:sapphire lasers with 500 MHz and even 1 GHz repetition rate are now commercially available [36

36. Giga Optics Website, http://www.gigaoptics.com/ (2011).

## 4. Conclusion

27. X.-s. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A **83**, 043814 (2011). [CrossRef]

## 5. Appendix

*ξ*

_{1}and

*ξ*

_{2}represent the overall efficiencies and non-linear interaction strengths for the forward and backward emissions, respectively, they are also linearly proportional to the electric field amplitude of each pulse;

*j*= {1,2} are the creation operators of the forward and backward down-conversion modes. From the above equation we obtain the following state, with

*λ*

_{1}=

*ξ*

_{1}

*τ*and

*λ*

_{1}=

*ξ*

_{2}

*τ*. Therefore, the probability of creating

*n*

_{1}and

*n*

_{2}photons from crystal passes 1 and 2 per pulse is given by For independent sources the presence of photons in modes

*a*

_{1}and

*a*

_{2}are heralded upon a detection event in modes

*b*

_{1}and

*b*

_{2}respectively. Again, using non-number resolving detectors with detection efficiency

*η*, the rate per second of jointly heralding photons in modes

*a*

_{1}and

*a*

_{2}is given by Similarly to the previous argument for dependent photons, halving the power per pulse while simultaneously doubling the repetition rate gives

## Acknowledgments

## References and links

1. | B. Lounis and M. Orrit, “Single-photon sources,”Rep. Prog. Phys. |

2. | E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature |

3. | P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature |

4. | C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature |

5. | K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggeredat telecommunications wavelength,” Appl. Phys. Lett. |

6. | J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based ona quantum dot in a photonic nanowire,” Nat. Photonics |

7. | A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D |

8. | C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. |

9. | J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science |

10. | C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. |

11. | B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature |

12. | R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Götzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett. |

13. | A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon fock state,” Phys. Rev. Lett. |

14. | T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. |

15. | A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. |

16. | A. B. U’Ren, Y. Jeronimo-Moreno, and H. Garcia-Gracia, “Generation of fourier-transform-limited heralded single photons,” Phys. Rev. A |

17. | W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A |

18. | A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett. |

19. | J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express |

20. | A. Brańczyk, A. Fedrizzi, T. Stace, T. Ralph, and A. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express |

21. | H. Weinfurter and M. Żukowski, “Four-photon entanglement from down-conversion,” Phys. Rev. A |

22. | G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. |

23. | T. J. Weinhold, A. Gilchrist, K. J. Resch, A. C. Doherty, J. L. O’Brien, G. J. Pryde, and A. G. White, “Understanding photonic quantum-logic gates: The road to fault tolerance,” arXiv:0808.0794v1 [quant-ph]. |

24. | M. Barbieri, T. J. Weinhold, B. P. Lanyon, A. Gilchrist, K. J. Resch, M. P. Almeida, and A. G. White, “Parametric downconversion and optical quantum gates: two’s company, four’s a crowd,” J. Mod. Opt. |

25. | A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A |

26. | T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. |

27. | X.-s. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A |

28. | Z.-Y. J. Ou, |

29. | P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. |

30. | P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. |

31. | N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett. |

32. | C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. |

33. | A. Brańczyk, T. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded fock states using parametric down-conversion,” N. J. Phys. |

34. | S. M. Tan, “A computational toolbox for quantum and atomic optics,” J. Opt. B: Quantum Semiclasss Opt. |

35. | J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. |

36. | Giga Optics Website, http://www.gigaoptics.com/ (2011). |

**OCIS Codes**

(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Nonlinear Optics

**History**

Original Manuscript: August 23, 2011

Revised Manuscript: October 6, 2011

Manuscript Accepted: October 6, 2011

Published: October 26, 2011

**Citation**

M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, "Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing," Opt. Express **19**, 22698-22708 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22698

Sort: Year | Journal | Reset

### References

- B. Lounis and M. Orrit, “Single-photon sources,”Rep. Prog. Phys.68, 1129 (2005). [CrossRef]
- E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef] [PubMed]
- P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406, 968–970 (2000). [CrossRef] [PubMed]
- C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419, 594–597 (2002). [CrossRef] [PubMed]
- K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggeredat telecommunications wavelength,” Appl. Phys. Lett.98, 083105 (2011). [CrossRef]
- J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based ona quantum dot in a photonic nanowire,” Nat. Photonics4, 174–177(2010). [CrossRef]
- A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D18, 191–196 (2002). [CrossRef]
- C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85, 290–293 (2000). [CrossRef] [PubMed]
- J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science303, 1992–1994 (2004). [CrossRef] [PubMed]
- C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett.92, 213601 (2004). [CrossRef] [PubMed]
- B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature407, 491–493 (2000). [CrossRef] [PubMed]
- R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Götzinger, and V. Sandoghdar, “Quantum interference of tunably indistinguishable photons from remote organic molecules,” Phys. Rev. Lett.104, 123605 (2010). [CrossRef] [PubMed]
- A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon fock state,” Phys. Rev. Lett.87, 050402 (2001). [CrossRef] [PubMed]
- T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun.246, 545–550 (2005). [CrossRef]
- A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93, 093601 (2004). [CrossRef] [PubMed]
- A. B. U’Ren, Y. Jeronimo-Moreno, and H. Garcia-Gracia, “Generation of fourier-transform-limited heralded single photons,” Phys. Rev. A75, 023810 (2007). [CrossRef]
- W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
- A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett.97, 223602 (2006). [CrossRef]
- J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express15, 7940–7949 (2007). [CrossRef] [PubMed]
- A. Brańczyk, A. Fedrizzi, T. Stace, T. Ralph, and A. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19, 55–65 (2011). [CrossRef]
- H. Weinfurter and M. Żukowski, “Four-photon entanglement from down-conversion,” Phys. Rev. A64, 010102 (2001). [CrossRef]
- G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett.85, 1330–1333 (2000). [CrossRef] [PubMed]
- T. J. Weinhold, A. Gilchrist, K. J. Resch, A. C. Doherty, J. L. O’Brien, G. J. Pryde, and A. G. White, “Understanding photonic quantum-logic gates: The road to fault tolerance,” arXiv:0808.0794v1 [quant-ph].
- M. Barbieri, T. J. Weinhold, B. P. Lanyon, A. Gilchrist, K. J. Resch, M. P. Almeida, and A. G. White, “Parametric downconversion and optical quantum gates: two’s company, four’s a crowd,” J. Mod. Opt.56, 209 – 214 (2009). [CrossRef]
- A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A66 (2002). [CrossRef]
- T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt.58, 276–287 (2011). [CrossRef]
- X.-s. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A83, 043814 (2011). [CrossRef]
- Z.-Y. J. Ou, Multi-Photon Quantum Interference, 1st ed. (Springer, 2010).
- P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79, 135–174 (2007). [CrossRef]
- P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett.105, 253601 (2010). [CrossRef]
- N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005). [CrossRef] [PubMed]
- C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987). [CrossRef] [PubMed]
- A. Brańczyk, T. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded fock states using parametric down-conversion,” N. J. Phys.12, 063001 (2010). [CrossRef]
- S. M. Tan, “A computational toolbox for quantum and atomic optics,” J. Opt. B: Quantum Semiclasss Opt.1 (1999).
- J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett.93 (2004). [PubMed]
- Giga Optics Website, http://www.gigaoptics.com/ (2011).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.