OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23111–23117
« Show journal navigation

Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode

Tae Hoon Seo, Kang Jea Lee, Ah Hyun Park, Chang-Hee Hong, Eun-Kyung Suh, Seung Jin Chae, Young Hee Lee, Tran Viet Cuong, Viet Hung Pham, Jin Suk Chung, Eui Jung Kim, and Seong-Ran Jeon  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23111-23117 (2011)
http://dx.doi.org/10.1364/OE.19.023111


View Full Text Article

Acrobat PDF (1139 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report GaN-based near ultraviolet (UV) light emitting diode (LED) that combines indium tin oxide (ITO) nanodot nodes with two-dimensional graphene film as a UV-transparent current spreading electrode (TCSE) to give rise to excellent UV emission efficiency. The light output power of 380 nm emitting UV-LEDs with graphene film on ITO nanodot nodes as TCSE was enhanced remarkably compared to conventional TCSE. The increase of the light output power is attributed to high UV transmittance of graphene, effective current spreading and injection, and texturing effect by ITO nanodots.

© 2011 OSA

1. Introduction

A solid-state UV light source is of special interest for their use in germicidal instrumentation, biological agent identification, chemical sensing, fluorescence excitation, and optical data storage [1

1. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008). [CrossRef]

]. In order to improve LED efficiency, most of current researches focus on two technological issues, namely, the optimization of the internal quantum efficiency including the mitigation of the IQE droop [2

2. N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, “Blue emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506-1–243506-3 (2007).

], and improvement of light extraction efficiency(LEE). Various designs have been proposed to extract generated photons from the active semiconductor layers [3

3. W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett. 75(10), 1360–1362 (1999). [CrossRef]

,4

4. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004). [CrossRef]

]. However, during GaN-based LED fabrication, elementary Ohmic contact and injection current distribution problems may be encountered. The p-type electrode requires both low contact resistance with p-type GaN and high transmittance for the extraction of photons from active layers. Typical p-type thin GaN layers with high lateral sheet resistance resulted in severe current crowding under the vertical direction of the electrode and low current spreading through the full emitting area. For these reasons, indium tin oxide (ITO) [5

5. D. W. Kim, H. Y. Lee, G. Y. Yeom, and Y. J. Sung, “A study of transparent contact to vertical GaN-based light-emitting diodes,” J. Appl. Phys. 98(5), 0531021–0531024 (2005).

,6

6. T. H. Seo, T. S. Oh, T. S. Lee, H. Jeong, J. D. Kim, H. Kim, A. H. Park, K. J. Lee, C.-H. Hong, and E.-K. Suh, “Enhanced Light Extraction in GaN-Based Light Emitting Diodes with Holographically Fabricated Concave Hemisphere-Shaped Patterning on Indium-Tin-Oxide Layer,” Jpn. J. Appl. Phys. 49, 092101-1–092101-3 (2010).

], gallium-doped ZnO (GZO) [7

7. J.-K. Sheu, M.-L. Lee, Y. S. Lu, and K. W. Shu, “Ga-Doped ZnO Transparent Conductive Oxide Films Applied to GaN-Based Light-Emitting Diodes for Improving Light Extraction Efficiency,” IEEE J. Quantum Electron. 44(12), 1211–1218 (2008). [CrossRef]

9

9. S. H. Tu, C. J. Lan, S. H. Wang, M. L. Lee, K. H. Chang, R. M. Lin, J. Y. Chang, and J. K. Sheu, “InGaN gallium nitride light-emitting diodes with reflective electrode pads and textured gallium-doped ZnO contact layer,” Appl. Phys. Lett. 96(13), 133504-1–133504-3 (2010).

] etc. are widely used as transparent conductive oxide (TCO) electrodes and current spreading layers in LEDs. Nevertheless, the TCO materials show relatively high absorption in the UV region, and hence, an alternative transparent electrode is required with optical and electrical performances similar to or better than those of TCO materials but without having drawbacks in the UV region.

Graphene has attracted much attention owing to its fascinating properties such as high optical transmittance of 97.7% over the visible and UV region, high thermal conductivity of ~5000 W/m·K, and high intrinsic carrier mobility of over 21,000 cm2/Vs at room temperature [10

10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]

,11

11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]

]. Several pioneering works have been reported in the application of graphene-based films as transparent electrodes in LEDs [12

12. G. H. Jo, M. H. Choe, C. Y. Cho, J. H. Kim, W. J. Park, S. C. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. H. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21, 175201-1–175201-6 (2010).

,13

13. T. H. Seo, K. J. Lee, T. S. Oh, Y. S. Lee, H. Jeong, A. H. Park, H. Kim, Y. R. Choi, E.-K. Suh, T. V. Cuong, V. H. Pham, J. S. Chung, and E. J. Kim, “Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 98(25), 251114-1–251114-3 (2011).

], solar cells [14

14. X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008). [CrossRef] [PubMed]

], sensors [15

15. T. V. Cuong, V. H. Pham, J. S. Chung, E. W. Shin, D. H. Yoo, S. H. Hahn, J. S. Huh, G. H. Rue, E. J. Kim, S. H. Hur, G. S. Rue, E. J. Kim, S. H. Hur, and P. A. Kohl, “Solution-processed ZnO-chemically converted graphene gas sensor,” Mater. Lett. 64(22), 2479–2482 (2010). [CrossRef]

] and electronic devices [16

16. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. (Deerfield Beach Fla.) 22(35), 3906–3924 (2010). [CrossRef] [PubMed]

]. Though graphene has a high mobility and transmittance, some difficulties arise when applied for LEDs; a direct contact of graphene to the p-GaN layers leads to high potential barriers that frustrate reliable LED operation, resulting in a high forward operating voltage and low light output power.

In this work, we prepared two types of graphenes, a chemically converted graphene (CCG) from graphene oxide (GO) [17

17. W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc. 80(6), 1339–1339 (1958). [CrossRef]

] and large-area graphene synthesized by chemical vapor deposition (CVD) method [18

18. F. Guneş, H.-J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010). [CrossRef] [PubMed]

]. A prototype current spreading electrode for near UV LED was constructed by combining ITO nanodots with graphene layers of each type.

2. Experimental

The AlInGaN-based UV LEDs were grown on sapphire substrate by metal-organic chemical vapor deposition. A 30 nm thick GaN buffer layer was deposited on sapphire substrate at 550°C, before the growth of an un-doped GaN layer with a thickness of 1.5 μm and a Si doped n-GaN layer with a thickness of 2.0 μm at 1050°C. Then five pairs of In0.04Ga0.96N QWs with 2 nm thickness and Al0.08Ga0.92N barrier layers with 12 nm thickness were grown at 800°C. Finally, Mg-doped p-Al0.25Ga0.75N electron blocking layer with a thickness of 25 nm and 100 nm thick p-GaN contact layer were grown at 1040°C. In order to form ITO nanodots on the p-GaN surface of LED wafer, a 100 nm ITO layer was deposited onto the p-GaN surface of LED wafer using amorphous ITO powders as the vaporizing target source. The as-deposited ITO layers were opaque and dark black in color. For the crystallization of ITO grains, these ITO films were annealed in N2 and O2 mixed ambient at 600 °C for 60 s in a rapid thermal annealing (RTA) chamber. During this process, the ITO films were converted to partially transparent films. When the ITO films were etched in dilute HCl:3H2O acid for about 5 s, ITO nanodots were formed on the p-GaN surface [13

13. T. H. Seo, K. J. Lee, T. S. Oh, Y. S. Lee, H. Jeong, A. H. Park, H. Kim, Y. R. Choi, E.-K. Suh, T. V. Cuong, V. H. Pham, J. S. Chung, and E. J. Kim, “Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 98(25), 251114-1–251114-3 (2011).

] as shown in Fig. 1
Fig. 1 The SEM image of ITO nanodots on the p-GaN surface of UV LED wafer.
.

To fabricate discrete UV-LED devices of size of 315×315 µm2, the graphene transferred UV-LED template were etched by inductively coupled plasma etching process using Cl2/BCl3/H2/Ar source gases until the n-type GaN layer was exposed for an n-type ohmic contact. Finally, Cr (50 nm)/Au (250 nm) metals for the p- and the n-electrodes were deposited onto both graphene films and the n-GaN layer using electron beam evaporator.

3. Results and Discussion

Figure 2 (a)
Fig. 2 (a) The optical transmittance of graphene, as-deposit ITO, annealed ITO, ITO nanodots, and Ga-doped ZnO films, respectively, as a function of wavelength. The photoluminescence spectrum of UV-LED structure is shown with the shaded peak. (b) Absorbance spectra in UV to visible wavelength region of (i) graphene-oxide, (ii) chemically converted graphene (CCG), and (iii) multi-layer graphene (MLG) films synthesized by CVD. Absorbance includes the effect of sapphire substrate.
shows the optical transmittance of various TCO materials and graphene as a function of wavelength. The photoluminescence (PL) spectrum of ~380 nm of our near-UV LED device is also shown by the shaded curve. The as-deposited ITO film exhibited only less than 20% transmittance in the visible to UV wavelength range. After RTA, the transmittance of the ITO film increased as the film structure altered from amorphous to crystalline state. In spite of the enhanced transmittance in the visible wavelength range, the crystallized ITO and GZO film deposited by radio frequency sputter revealed strong absorption band in near UV region. On the other hand, the transmittance of ITO nanodot template was greater than 90% at UV and visible wavelength ranges. Unlike the crystallized ITO and GZO films, the transmittance of graphene revealed more than 90% throughout the entire range of wavelength including UV region. Figure 2 (b) shows the UV to visible absorbance spectra of prepared graphene samples. The GO sample showed the dominant absorbance peak around 233 nm, which is ascribed to π→π* transition of aromatic C–C bonds, and a shoulder at 300 nm, associated with n →π* transition of C═O bonds [19

19. T. V. Cuong, V. H. Pham, Q. T. Tran, S. H. Hahn, J. S. Chung, E. W. Shin, and E. J. Kim, “Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide,” Mater. Lett. 64(3), 399–401 (2010). [CrossRef]

]. The shoulder around ~300 nm disappeared after chemically converted by hydrazine treatment, most likely due to the decrease in the concentration of carboxyl groups [21

21. Z. Luo, Y. Lu, L. A. Somers, and A. T. C. Johnson, “High yield preparation of macroscopic graphene oxide membranes,” J. Am. Chem. Soc. 131(3), 898–899 (2009). [CrossRef] [PubMed]

], and main peak was red-shifted to 270 nm as the electronic conjugation was restored [19

19. T. V. Cuong, V. H. Pham, Q. T. Tran, S. H. Hahn, J. S. Chung, E. W. Shin, and E. J. Kim, “Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide,” Mater. Lett. 64(3), 399–401 (2010). [CrossRef]

,22

22. D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008). [CrossRef] [PubMed]

]. In contrast, the CVD-grown monolayer graphene shows no sp3-like characters.

The EL spectra and light output powers of InGaN/AlGaN MQW UV-LEDs with various TCSEs examined in Fig. 4 are shown in Fig. 5(a)
Fig. 5 (a) EL spectra at an applied current of 100 mA and (b) the light output powers as a function of injection current of InGaN/AlGaN MQW UV-LEDs with various conducting layer structures.
and 5(b), respectively. All UV-LEDs were well operated at 380 nm emission wavelength with graphene TCSEs and ITO electrodes at an injection current of 100 mA. The emission power of UV-LED with graphene TCSEs was significantly enhanced, as can be seen in Fig. 5(b); about 150% enhancement for the CCG and 60% for the CVD-grown graphene film with ITO nanodots compared to conventional planar ITO at an operation current of 100 mA. The enhancement of output power of graphene film on ITO nanodot structure is remarkable. We suggest the mechanism of the light output power enhancement associated with graphene layer on ITO nanodots is caused by the small area of ohmic contact [25

25. P. Guéret, P. Buchmann, K. Daetwyler, and P. Vettiger, “Resistance of very small area ohmic contacts on GaAs,” Appl. Phys. Lett. 55(17), 1735–1737 (1989). [CrossRef]

], the quasi nano-pixellated emission source effects [26

26. H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, R. W. Martin, and S. Tripathy, “Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes,” J. Appl. Phys. 93(10), 5978–5982 (2003). [CrossRef]

], and the texturing effect of ITO nanodots. The dispersed ITO nanodots on p-GaN surface and graphene layers effectively supply the injection current with rather uniform current densities into the whole emission area. The small ITO nanodot current sink sources do not disperse the current laterally on p-GaN layers but directly supply the current to pn active junction. Additionally, the ITO nanodots are excellent light texturing centers for light extraction path, reducing total internal reflection of generated photons at the surface. Also, the reduced Ohmic contact area by small ITO nanodots reduces the photon absorption center at the interface between ITO and p-GaN layer at which some alloying components are generated during thermal annealing. As a consequence, EL spectra and the light output powers of InGaN/AlGaN MQW UV LEDs with graphene film on ITO nanodot nodes are greatly improved.

4. Conclusion

In conclusion, we propose graphene films on ITO nanodot nodes as transparent and current spreading electrode in InGaN/AlGaN MQW UV-LEDs which demonstrated significant enhancement of light output characteristics at 380 nm wavelength LEDs. The light output power is remarkably enhanced without electrical drawbacks.

Acknowledgments

This work was supported by Basic science Research Laboratory (BRL: 2010-0019694) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology. One of us (YHL) acknowledges the WCU (World Class University) program through the NRF funded by the MEST (R31-2008-10029).

References and links

1.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008). [CrossRef]

2.

N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, “Blue emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506-1–243506-3 (2007).

3.

W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett. 75(10), 1360–1362 (1999). [CrossRef]

4.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004). [CrossRef]

5.

D. W. Kim, H. Y. Lee, G. Y. Yeom, and Y. J. Sung, “A study of transparent contact to vertical GaN-based light-emitting diodes,” J. Appl. Phys. 98(5), 0531021–0531024 (2005).

6.

T. H. Seo, T. S. Oh, T. S. Lee, H. Jeong, J. D. Kim, H. Kim, A. H. Park, K. J. Lee, C.-H. Hong, and E.-K. Suh, “Enhanced Light Extraction in GaN-Based Light Emitting Diodes with Holographically Fabricated Concave Hemisphere-Shaped Patterning on Indium-Tin-Oxide Layer,” Jpn. J. Appl. Phys. 49, 092101-1–092101-3 (2010).

7.

J.-K. Sheu, M.-L. Lee, Y. S. Lu, and K. W. Shu, “Ga-Doped ZnO Transparent Conductive Oxide Films Applied to GaN-Based Light-Emitting Diodes for Improving Light Extraction Efficiency,” IEEE J. Quantum Electron. 44(12), 1211–1218 (2008). [CrossRef]

8.

T.-Y. Park, Y.-S. Choi, J.-W. Kang, J.-H. Jeong, S.-J. Park, D. M. Jeon, J. W. Kim, and Y. C. Kim, “Enhanced optical power and low forward voltage of GaN-based light-emitting diodes with Ga-doped ZnO transparent conducting layer,” Appl. Phys. Lett. 96(5), 051124-1–051124-3 (2010).

9.

S. H. Tu, C. J. Lan, S. H. Wang, M. L. Lee, K. H. Chang, R. M. Lin, J. Y. Chang, and J. K. Sheu, “InGaN gallium nitride light-emitting diodes with reflective electrode pads and textured gallium-doped ZnO contact layer,” Appl. Phys. Lett. 96(13), 133504-1–133504-3 (2010).

10.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]

11.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]

12.

G. H. Jo, M. H. Choe, C. Y. Cho, J. H. Kim, W. J. Park, S. C. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. H. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21, 175201-1–175201-6 (2010).

13.

T. H. Seo, K. J. Lee, T. S. Oh, Y. S. Lee, H. Jeong, A. H. Park, H. Kim, Y. R. Choi, E.-K. Suh, T. V. Cuong, V. H. Pham, J. S. Chung, and E. J. Kim, “Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 98(25), 251114-1–251114-3 (2011).

14.

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008). [CrossRef] [PubMed]

15.

T. V. Cuong, V. H. Pham, J. S. Chung, E. W. Shin, D. H. Yoo, S. H. Hahn, J. S. Huh, G. H. Rue, E. J. Kim, S. H. Hur, G. S. Rue, E. J. Kim, S. H. Hur, and P. A. Kohl, “Solution-processed ZnO-chemically converted graphene gas sensor,” Mater. Lett. 64(22), 2479–2482 (2010). [CrossRef]

16.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. (Deerfield Beach Fla.) 22(35), 3906–3924 (2010). [CrossRef] [PubMed]

17.

W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc. 80(6), 1339–1339 (1958). [CrossRef]

18.

F. Guneş, H.-J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010). [CrossRef] [PubMed]

19.

T. V. Cuong, V. H. Pham, Q. T. Tran, S. H. Hahn, J. S. Chung, E. W. Shin, and E. J. Kim, “Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide,” Mater. Lett. 64(3), 399–401 (2010). [CrossRef]

20.

V. H. Pham, T. V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S. Chung, and E. J. Kim, “Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating,” Carbon 48(7), 1945–1951 (2010). [CrossRef]

21.

Z. Luo, Y. Lu, L. A. Somers, and A. T. C. Johnson, “High yield preparation of macroscopic graphene oxide membranes,” J. Am. Chem. Soc. 131(3), 898–899 (2009). [CrossRef] [PubMed]

22.

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008). [CrossRef] [PubMed]

23.

X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. D. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009). [CrossRef] [PubMed]

24.

H. Ago, T. Kugler, F. Cacialli, K. Petritsch, R. H. Friend, W. R. Salaneck, Y. Ono, T. Yamabe, and K. Tanaka, “Work function of purified and oxidised carbon nanotubes,” Synth. Met. 103(1-3), 2494–2495 (1999). [CrossRef]

25.

P. Guéret, P. Buchmann, K. Daetwyler, and P. Vettiger, “Resistance of very small area ohmic contacts on GaAs,” Appl. Phys. Lett. 55(17), 1735–1737 (1989). [CrossRef]

26.

H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, R. W. Martin, and S. Tripathy, “Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes,” J. Appl. Phys. 93(10), 5978–5982 (2003). [CrossRef]

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.0230) Optical devices : Optical devices
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Optical Devices

History
Original Manuscript: August 25, 2011
Revised Manuscript: October 6, 2011
Manuscript Accepted: October 13, 2011
Published: October 31, 2011

Citation
Tae Hoon Seo, Kang Jea Lee, Ah Hyun Park, Chang-Hee Hong, Eun-Kyung Suh, Seung Jin Chae, Young Hee Lee, Tran Viet Cuong, Viet Hung Pham, Jin Suk Chung, Eui Jung Kim, and Seong-Ran Jeon, "Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode," Opt. Express 19, 23111-23117 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23111


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics2(2), 77–84 (2008). [CrossRef]
  2. N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, “Blue emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett.91(24), 243506-1–243506-3 (2007).
  3. W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett.75(10), 1360–1362 (1999). [CrossRef]
  4. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004). [CrossRef]
  5. D. W. Kim, H. Y. Lee, G. Y. Yeom, and Y. J. Sung, “A study of transparent contact to vertical GaN-based light-emitting diodes,” J. Appl. Phys.98(5), 0531021–0531024 (2005).
  6. T. H. Seo, T. S. Oh, T. S. Lee, H. Jeong, J. D. Kim, H. Kim, A. H. Park, K. J. Lee, C.-H. Hong, and E.-K. Suh, “Enhanced Light Extraction in GaN-Based Light Emitting Diodes with Holographically Fabricated Concave Hemisphere-Shaped Patterning on Indium-Tin-Oxide Layer,” Jpn. J. Appl. Phys.49, 092101-1–092101-3 (2010).
  7. J.-K. Sheu, M.-L. Lee, Y. S. Lu, and K. W. Shu, “Ga-Doped ZnO Transparent Conductive Oxide Films Applied to GaN-Based Light-Emitting Diodes for Improving Light Extraction Efficiency,” IEEE J. Quantum Electron.44(12), 1211–1218 (2008). [CrossRef]
  8. T.-Y. Park, Y.-S. Choi, J.-W. Kang, J.-H. Jeong, S.-J. Park, D. M. Jeon, J. W. Kim, and Y. C. Kim, “Enhanced optical power and low forward voltage of GaN-based light-emitting diodes with Ga-doped ZnO transparent conducting layer,” Appl. Phys. Lett.96(5), 051124-1–051124-3 (2010).
  9. S. H. Tu, C. J. Lan, S. H. Wang, M. L. Lee, K. H. Chang, R. M. Lin, J. Y. Chang, and J. K. Sheu, “InGaN gallium nitride light-emitting diodes with reflective electrode pads and textured gallium-doped ZnO contact layer,” Appl. Phys. Lett.96(13), 133504-1–133504-3 (2010).
  10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004). [CrossRef] [PubMed]
  11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  12. G. H. Jo, M. H. Choe, C. Y. Cho, J. H. Kim, W. J. Park, S. C. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. H. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology21, 175201-1–175201-6 (2010).
  13. T. H. Seo, K. J. Lee, T. S. Oh, Y. S. Lee, H. Jeong, A. H. Park, H. Kim, Y. R. Choi, E.-K. Suh, T. V. Cuong, V. H. Pham, J. S. Chung, and E. J. Kim, “Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode,” Appl. Phys. Lett.98(25), 251114-1–251114-3 (2011).
  14. X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8(1), 323–327 (2008). [CrossRef] [PubMed]
  15. T. V. Cuong, V. H. Pham, J. S. Chung, E. W. Shin, D. H. Yoo, S. H. Hahn, J. S. Huh, G. H. Rue, E. J. Kim, S. H. Hur, G. S. Rue, E. J. Kim, S. H. Hur, and P. A. Kohl, “Solution-processed ZnO-chemically converted graphene gas sensor,” Mater. Lett.64(22), 2479–2482 (2010). [CrossRef]
  16. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. (Deerfield Beach Fla.)22(35), 3906–3924 (2010). [CrossRef] [PubMed]
  17. W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc.80(6), 1339–1339 (1958). [CrossRef]
  18. F. Guneş, H.-J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano4(8), 4595–4600 (2010). [CrossRef] [PubMed]
  19. T. V. Cuong, V. H. Pham, Q. T. Tran, S. H. Hahn, J. S. Chung, E. W. Shin, and E. J. Kim, “Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide,” Mater. Lett.64(3), 399–401 (2010). [CrossRef]
  20. V. H. Pham, T. V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S. Chung, and E. J. Kim, “Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating,” Carbon48(7), 1945–1951 (2010). [CrossRef]
  21. Z. Luo, Y. Lu, L. A. Somers, and A. T. C. Johnson, “High yield preparation of macroscopic graphene oxide membranes,” J. Am. Chem. Soc.131(3), 898–899 (2009). [CrossRef] [PubMed]
  22. D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol.3(2), 101–105 (2008). [CrossRef] [PubMed]
  23. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. D. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009). [CrossRef] [PubMed]
  24. H. Ago, T. Kugler, F. Cacialli, K. Petritsch, R. H. Friend, W. R. Salaneck, Y. Ono, T. Yamabe, and K. Tanaka, “Work function of purified and oxidised carbon nanotubes,” Synth. Met.103(1-3), 2494–2495 (1999). [CrossRef]
  25. P. Guéret, P. Buchmann, K. Daetwyler, and P. Vettiger, “Resistance of very small area ohmic contacts on GaAs,” Appl. Phys. Lett.55(17), 1735–1737 (1989). [CrossRef]
  26. H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, R. W. Martin, and S. Tripathy, “Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes,” J. Appl. Phys.93(10), 5978–5982 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited