OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23538–23543
« Show journal navigation

Femtosecond VECSEL with tunable multi-gigahertz repetition rate

Oliver D. Sieber, Valentin J. Wittwer, Mario Mangold, Martin Hoffmann, Matthias Golling, Thomas Südmeyer, and Ursula Keller  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23538-23543 (2011)
http://dx.doi.org/10.1364/OE.19.023538


View Full Text Article

Acrobat PDF (1210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a femtosecond vertical external cavity surface emitting laser (VECSEL) that is continuously tunable in repetition rate from 6.5 GHz up to 11.3 GHz. The use of a low-saturation fluence semiconductor saturable absorber mirror (SESAM) enables stable cw modelocking with a simple cavity design, for which the laser mode area on SESAM and VECSEL are similar and do not significantly change for a variation in cavity length. Without any realignment of the cavity for the full tuning range, the pulse duration remained nearly constant around 625 fs with less than 3.5% standard deviation. The center wavelength only changed ±0.2 nm around 963.8 nm, while the output power was 169 mW with less than 6% standard deviation. Such a tunable repetition rate is interesting for various metrology applications such as optical sampling by laser cavity tuning (OSCAT).

© 2011 OSA

1. Introduction

The ultrafast semiconductor laser is based on an optically pumped vertical external cavity surface emitting lasers (VECSELs [3

3. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997). [CrossRef]

]) which combines the advantages of diode-pumped solid-state lasers (DPSSL) and semiconductor lasers. The semiconductor gain chip enables bandgap engineering and inexpensive mass production, while the external cavity allows for transverse mode control and the introduction of additional cavity elements, for instance to enable passive modelocking or non-linear frequency conversion. So far, all passively modelocked VECSELs were realized using semiconductor saturable absorber mirrors (SESAMs [4

4. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992). [CrossRef] [PubMed]

6

6. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010). [CrossRef]

]). Repetition rates up to 50 GHz in 3.3-ps pulses [7

7. D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006). [CrossRef]

] and average powers up to 2.1 W in 4.7-ps pulses [8

8. A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, “2.1-W picosecond passively mode-locked external-cavity semiconductor laser,” Opt. Lett. 30(3), 272–274 (2005). [CrossRef] [PubMed]

] were reported from SESAM-modelocked VECSELs. Higher power levels up to 6.4 W in 28.1-ps pulses [9

9. B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010). [CrossRef] [PubMed]

] were demonstrated with a modelocked integrated external cavity surface emitting laser MIXSEL) [10

10. D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007). [CrossRef]

,11

11. A.-R. Bellancourt, D. J. H. C. Maas, B. Rudin, M. Golling, T. Südmeyer, and U. Keller, “Modelocked Integrated External-Cavity Surface Emitting Laser,” IET Optoelectronics 3(2), 61–72 (2009). [CrossRef]

], in which gain layers and the saturable absorber are integrated into one single semiconductor chip. Such ultrafast VECSELs which are interesting for metrology applications, generate pulses as short as 107 fs with 3 mW average power in fundamental modelocking [12

12. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011). [CrossRef]

], and down to 60 fs in multipulse mode [13

13. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009). [CrossRef]

] and 784 fs with even more than 1 W average power [14

14. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011). [CrossRef] [PubMed]

]. The timing jitter of such lasers is very low and comparable to DPSSLs [15

15. V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Sudmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics J. 3(4), 658–664 (2011). [CrossRef]

,16

16. A. H. Quarterman, K. G. Wilcox, S. P. Elsmere, Z. Mihoubi, and A. C. Tropper, “Active stabilisation and timing jitter characterisation of sub-500 fs pulse passively modelocked VECSEL,” Electron. Lett. 44(19), 1135–1137 (2008). [CrossRef]

].

A very large pulse repetition rate tuning without any significant changes in the laser performance is challenging. So far, femtosecond VECSELs were realized using quantum wells (QWs) both for the gain layers and the saturable absorber. Such a configuration usually requires a smaller spot size on the saturable absorber than on the gain chip to achieve stable pulse formation [17

17. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006). [CrossRef]

]. Quantum dot (QD) SESAMs can achieve lower saturation fluences in comparison to standard QW-SESAMs, which allows for modelocking with the same mode radius on the gain and absorber sections. This is usually referred to as “1:1 modelocking” [17

17. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006). [CrossRef]

]. Furthermore, fast recombination dynamics can be achieved using QDs [18

18. D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “Growth parameter optimization for fast quantum dot SESAMs,” Opt. Express 16(23), 18646–18656 (2008). [CrossRef] [PubMed]

] and femtosecond operation at Watt-level was demonstrated with modelocked VECSEL using QDs in both the gain and absorber layers [14

14. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011). [CrossRef] [PubMed]

].

The free-space propagation in the external cavity of the VECSEL allows for simple repetition rate tuning by changing the cavity length. Very recently, a tuning range from 1 GHz to 1.2 GHz with 450-fs pulses and an output power of 45 mW was obtained from a QW-VECSEL modelocked with a QW-SESAM [19

19. K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency femtosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett. 99(13), 131107 (2011). [CrossRef]

]. Using a QD-SESAM and 1:1 modelocking allows for a cavity design in which the mode sizes on the VECSEL and SESAM remain nearly constant for significant changes in the cavity length. Due to recent findings on the pulse forming mechanism in VECSELs [20

20. M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18(10), 10143–10153 (2010). [CrossRef] [PubMed]

], important parameters like pulse duration, output power and center wavelength can remain stable for a change of the cavity length. Here, we present a femtosecond QW-VECSEL modelocked with a QD-SESAM which can be tuned in repetition rate from 6.5 GHz up to 11.3 GHz. While tuning, the repetition rate, the pulse duration remained nearly constant at 625 fs ±3.5% standard deviation with an average output power of 169 mW ±6% for all repetition rates.

2. Cavity setup

2.1 QW gain structure

In our experiment, we used a QW gain structure which was grown by molecular beam epitaxy (MBE) on a GaAs substrate. The device consists of two AlAs/Al0.2Ga0.8As distributed Bragg reflectors (DBRs). A 15-pair DBR at the bottom of the structure reflects the pump wavelength at 808 nm with a theoretical reflectivity of more than 99%, and a 30-pair DBR for the 950-nm laser wavelength is placed on top of it. It is designed for an angle of incidence of 10° and has a theoretical reflectivity of more than 99.9%. Between the two DBRs, an Al0.2Ga0.8As spacer layer is positioned which allows for optimizing the pump absorption without changing the standing wave pattern of the electric field of the laser. According to our simulation, 95% of the pump power is absorbed in the active region which is located on top of the two DBRs. It consists of 7 indium gallium arsenide (InGaAs) QW layers, separated by GaAs spacer layers. The QW layers are positioned in the antinodes of the electric field of slightly different wavelengths around the center wavelength of 950 nm, in a similar way as reported in [14

14. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011). [CrossRef] [PubMed]

]. On top of the active region, an anti-reflection (AR) section is placed, which results in an extremely low dispersion of our structure [14

14. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011). [CrossRef] [PubMed]

]. It consists of 14 AlAs/Al0.2Ga0.8As layers, a GaAs cap layer and a fused silica (FS) layer on the top. The FS layer was deposited using plasma enhanced chemical vapor deposition (PECVD). This AR section provides group delay dispersion (GDD) values of ±10 fs2 over a range of 40 nm around the design wavelength. For better thermal management the QW-VECSEL gain structure was grown in reverse order, soldered onto a CVD diamond heat spreader (thermal conductivity >1800 WK−1m−1) and the GaAs substrate was removed by a chemical wet etching [21

21. R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1268–1275 (2002). [CrossRef]

].

2.2 QD-SESAM

Modelocking was obtained by using a QD-SESAM with a standard resonant design and one QD absorber layer [22

22. G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81(1), 27–32 (2005). [CrossRef]

]. It was MBE-grown on a 600-µm thick GaAs substrate. The QD-SESAM has a DBR made of 30 pairs of quarter-wave layers of AlAs and GaAs. The absorber section itself is directly grown on the DBR where the QD layer is embedded in GaAs and placed in the antinode of the standing wave pattern of the electric field at 965 nm. This SESAM was characterized at a center wavelength of 965 nm [23

23. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004). [CrossRef]

,24

24. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16(10), 7571–7579 (2008). [CrossRef] [PubMed]

]. A fast absorption recovery component in the order of 800 fs makes this QD-SESAM well-suited for femtosecond operation. The saturation fluence is 3.8 µJcm−2 with non-saturable losses of less than 1%, and a modulation depth of 1.2% (as reported in [14

14. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011). [CrossRef] [PubMed]

]).

2.3 Cavity configuration

For the experiment we used a standard V-shaped cavity in which the gain structure forms an active folding mirror. The end mirrors are the QD-SESAM and the curved output coupler (Fig. 1a
Fig. 1 a) Schematic overview of the V-shaped laser cavity, showing the pump geometry and the cavity elements: output coupler, QW-VECSEL and QD-SESAM. The repetition rate was changed by moving the output coupler in z-direction. TOC: output coupler transmission. ROC: radius of curvature of the output coupler. b) Simulated laser beam radii in the cavity (blue) for different cavity lengths and output coupler positions highlighted in red, also marked with the corresponding repetition rates. The two black lines indicate the positions of the QD-SESAM and the gain structure. The laser beam on the gain structure changes by less than +/−5% and is always smaller than the pump spot radius (120 µm).
). The temperature of the heat sink of the QW-VECSEL was adjusted to −20 °C while the gain structure was pumped at 3.3 W with a commercial 30-W 808-nm fiber coupled diode. The pump was focused on the gain structure under an angle of 45° and the pump spot radius amounted to 120 µm. The angle of incidence of the laser on the gain structure was about 10°. While the short arm between the QD-SESAM and the gain structure was kept constant at 4 mm, the length of the long arm between the gain chip and the output coupler was varied between 9.2 mm and 19 mm using a translation stage. Therefore, the possible cavity lengths correspond to repetition rates of the modelocked laser between 6.5 GHz and 11.3 GHz (Fig. 1b). Using a radius of curvature (ROC) of 100 mm for the output coupler results in a cavity configuration for which the laser mode on the gain structure remains nearly constant for such changes in cavity length. Simulations of the cavity mode profiles show, that the radius of the laser spot on the gain structure changes only slightly from 102.5 µm for the 11.3-GHz-cavity to 113.4 µm for the 6.5-GHz-cavity. Furthermore, the radius of the laser spot on the QD-SESAM is nearly the same as on the gain structure, i.e. it changes from 101.8 µm (11.3 GHz) to 113.4 µm (6.5 GHz).

This cavity setup allowed a change in repetition rate by simply moving the output coupler on a translation stage in z-direction during laser operation. It was not necessary to realign the laser after changing the cavity length.

3. Experimental results

With the laser cavity described above we achieved stable self-starting modelocking generating femtosecond pulses at continuously tunable repetition rates. Measurements for a repetition rate of 10 GHz are shown in Fig. 2
Fig. 2 Modelocking results obtained at a repetition rate of 10 GHz. a) Measured auto-correlation trace (blue) and fitted autocorrelation of a 607-fs sech2-pulse (red). b) Microwave spectrum with a resolution bandwidth of 100 kHz and a span of 10 MHz showing a repetition rate of 10 GHz. c) Measured optical spectrum with a spectral width of 2.04 nm around 963.7 nm in red with a spectral resolution of 0.1 nm (32 GHz) and in blue with a spectral resolution of 0.01 nm (3.2 GHz), where the longitudinal cavity modes can be partially resolved.
.

While tuning the repetition rate from 6.5 GHz to 11.3 GHz without any realignment, the pulse duration remained nearly constant around 625 fs with less than 3.5% standard deviation (Fig. 3
Fig. 3 The repetition rate was tuned from 6.5 GHz up to 11.3 GHz. During the tuning we measured only small changes in output power (blue), with less than 6% standard deviation around 169 mW, while the pulse duration (red) was nearly constant around 625 fs with less than 3% standard deviation. The center wavelength (green) was extremely constant changing only about ±0.2 nm around 963.8 nm.
red). Over the entire measurement for all cavity lengths, we measured only small changes in output power of less than 6% standard deviation around 169 mW (Fig. 3 blue). During the tuning, the center wavelength was extremely constant changing only about ±0.2 nm around 963.8 nm (Fig. 3 green) even though no etalon was used for wavelength stabilization. The time-bandwidth product in all cases was approximately 1.3 times the transform-limit of a sech2-pulse. The laser was fundamentally modelocked. The beam quality was measured at 6.5 GHz and 10 GHz and M2 values of less than 1.05 were obtained.

4. Conclusion

In summary, we demonstrated a femtosecond QW-VECSEL modelocked with a QD-SESAM which can be continuously tuned in repetition rate from 6.5 GHz up to 11.3 GHz. For all repetition rates, we obtained similar pulse durations around 625 fs with less than 3.5% variation while the output power was also extremely stable with 169 mW ±6%. In our design, the mode areas on VECSEL and SESAM are the same and remain nearly constant for a change in cavity length. This requires a low-saturation fluence SESAM, which can be realized by the use of QD absorbers. This performance is attractive for numerous applications, for example cost-efficient and compact pump-probe measurements using the OSCAT scheme.

Acknowledgments

This work was supported by ETH Zürich with the FIRST clean room facility and was financed by the Swiss Confederation Program Nano-Tera.ch, which was scientifically evaluated by the SNSF and by the European Community’s Seventh Framework Program FAST-DOT under grant agreement 224338.

References and links

1.

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010). [CrossRef] [PubMed]

2.

C. Erny, G. J. Spühler, L. Krainer, R. Paschotta, K. J. Weingarten, and U. Keller, “Simple repetition rate tunable picosecond pulse-generating 10 GHz laser,” Electron. Lett. 40(14), 877–878 (2004). [CrossRef]

3.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997). [CrossRef]

4.

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992). [CrossRef] [PubMed]

5.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]

6.

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010). [CrossRef]

7.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006). [CrossRef]

8.

A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, “2.1-W picosecond passively mode-locked external-cavity semiconductor laser,” Opt. Lett. 30(3), 272–274 (2005). [CrossRef] [PubMed]

9.

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010). [CrossRef] [PubMed]

10.

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007). [CrossRef]

11.

A.-R. Bellancourt, D. J. H. C. Maas, B. Rudin, M. Golling, T. Südmeyer, and U. Keller, “Modelocked Integrated External-Cavity Surface Emitting Laser,” IET Optoelectronics 3(2), 61–72 (2009). [CrossRef]

12.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011). [CrossRef]

13.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009). [CrossRef]

14.

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express 19(9), 8108–8116 (2011). [CrossRef] [PubMed]

15.

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Sudmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics J. 3(4), 658–664 (2011). [CrossRef]

16.

A. H. Quarterman, K. G. Wilcox, S. P. Elsmere, Z. Mihoubi, and A. C. Tropper, “Active stabilisation and timing jitter characterisation of sub-500 fs pulse passively modelocked VECSEL,” Electron. Lett. 44(19), 1135–1137 (2008). [CrossRef]

17.

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006). [CrossRef]

18.

D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “Growth parameter optimization for fast quantum dot SESAMs,” Opt. Express 16(23), 18646–18656 (2008). [CrossRef] [PubMed]

19.

K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency femtosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett. 99(13), 131107 (2011). [CrossRef]

20.

M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18(10), 10143–10153 (2010). [CrossRef] [PubMed]

21.

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1268–1275 (2002). [CrossRef]

22.

G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81(1), 27–32 (2005). [CrossRef]

23.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004). [CrossRef]

24.

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16(10), 7571–7579 (2008). [CrossRef] [PubMed]

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7100) Ultrafast optics : Ultrafast measurements
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 31, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: October 21, 2011
Published: November 3, 2011

Citation
Oliver D. Sieber, Valentin J. Wittwer, Mario Mangold, Martin Hoffmann, Matthias Golling, Thomas Südmeyer, and Ursula Keller, "Femtosecond VECSEL with tunable multi-gigahertz repetition rate," Opt. Express 19, 23538-23543 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express18(2), 1613–1617 (2010). [CrossRef] [PubMed]
  2. C. Erny, G. J. Spühler, L. Krainer, R. Paschotta, K. J. Weingarten, and U. Keller, “Simple repetition rate tunable picosecond pulse-generating 10 GHz laser,” Electron. Lett.40(14), 877–878 (2004). [CrossRef]
  3. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997). [CrossRef]
  4. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett.17(7), 505–507 (1992). [CrossRef] [PubMed]
  5. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  6. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B100(1), 15–28 (2010). [CrossRef]
  7. D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42(8), 838–847 (2006). [CrossRef]
  8. A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, “2.1-W picosecond passively mode-locked external-cavity semiconductor laser,” Opt. Lett.30(3), 272–274 (2005). [CrossRef] [PubMed]
  9. B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express18(26), 27582–27588 (2010). [CrossRef] [PubMed]
  10. D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B88(4), 493–497 (2007). [CrossRef]
  11. A.-R. Bellancourt, D. J. H. C. Maas, B. Rudin, M. Golling, T. Südmeyer, and U. Keller, “Modelocked Integrated External-Cavity Surface Emitting Laser,” IET Optoelectronics3(2), 61–72 (2009). [CrossRef]
  12. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98(7), 071103 (2011). [CrossRef]
  13. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009). [CrossRef]
  14. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19(9), 8108–8116 (2011). [CrossRef] [PubMed]
  15. V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Sudmeyer, and U. Keller, “Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL,” IEEE Photonics J.3(4), 658–664 (2011). [CrossRef]
  16. A. H. Quarterman, K. G. Wilcox, S. P. Elsmere, Z. Mihoubi, and A. C. Tropper, “Active stabilisation and timing jitter characterisation of sub-500 fs pulse passively modelocked VECSEL,” Electron. Lett.44(19), 1135–1137 (2008). [CrossRef]
  17. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006). [CrossRef]
  18. D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “Growth parameter optimization for fast quantum dot SESAMs,” Opt. Express16(23), 18646–18656 (2008). [CrossRef] [PubMed]
  19. K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency femtosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett.99(13), 131107 (2011). [CrossRef]
  20. M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express18(10), 10143–10153 (2010). [CrossRef] [PubMed]
  21. R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron.38(9), 1268–1275 (2002). [CrossRef]
  22. G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B81(1), 27–32 (2005). [CrossRef]
  23. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B79(3), 331–339 (2004). [CrossRef]
  24. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16(10), 7571–7579 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited