## Hybridization Induced Transparency in composites of metamaterials and atomic media |

Optics Express, Vol. 19, Issue 23, pp. 23573-23580 (2011)

http://dx.doi.org/10.1364/OE.19.023573

Acrobat PDF (2119 KB)

### Abstract

We report hybridization induced transparency (HIT) in a composite medium consisting of a metamaterial and a dielectric. We develop an analytic model that explains HIT by coherent coupling between the hybridized local fields of the metamaterial and the dielectric or an atomic system in general. In a proof-of-principle experiment, we evidence HIT in a split ring resonator metamaterial that is coupled to *α*-lactose monohydrate. Both, the analytic model and numerical calculations confirm and explain the experimental observations. HIT can be considered as a hybrid analogue to electromagnetically induced transparency (EIT) and plasmon-induced transparency (PIT).

© 2011 OSA

## 1. Introduction

1. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. **91**, 037401 (2003). [CrossRef] [PubMed]

2. E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New Journal of Physics **12**, 093010 (2010). [CrossRef]

3. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photonics **2**, 351–354 (2008). [CrossRef]

4. M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express **16**, 19785–19798 (2008). [CrossRef] [PubMed]

5. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature **466**, 735–738 (2010). [CrossRef] [PubMed]

6. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature **444**, 597–600 (2006). [CrossRef] [PubMed]

8. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express **17**, 819–827 (2009). [CrossRef] [PubMed]

9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science **314**, 977–980 (2006). [CrossRef] [PubMed]

10. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. **101**, 047401 (2008). [CrossRef] [PubMed]

11. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials **8**, 758–762 (2009). [CrossRef] [PubMed]

12. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science **332**, 1407–1410 (2011). [CrossRef] [PubMed]

13. A. Artar, A. A. Yanik, and H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. **11**, 1685–1689 (2011). [CrossRef] [PubMed]

14. S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express **19**, 15363–15370 (2011). [CrossRef] [PubMed]

15. S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics **13**, 023034 (2011). [CrossRef]

10. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. **101**, 047401 (2008). [CrossRef] [PubMed]

11. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials **8**, 758–762 (2009). [CrossRef] [PubMed]

12. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science **332**, 1407–1410 (2011). [CrossRef] [PubMed]

16. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics **3**, 157–162 (2009). [CrossRef]

9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science **314**, 977–980 (2006). [CrossRef] [PubMed]

17. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New Journal of Physics **9**, 45 (2007). [CrossRef]

18. K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. **66**, 2593–2596 (1991). [CrossRef] [PubMed]

19. M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. **77**, 633–673 (2005). [CrossRef]

*a*〉, |

*b*〉 and |

*c*〉. Hereby, the transitions between states |

*a*〉 and |

*b*〉 and between |

*c*〉 and |

*b*〉 are dipole allowed while state |

*c*〉 is metastable with respect to a transition between |

*c*〉 and |

*a*〉. In this system, population can be transferred from |

*a*〉 to |

*b*〉 either by broadband absorption of an external probe field that drives the direct path |

*a*〉–|

*b*〉 or alternately by the pathway |

*a*〉–|

*b*〉–|

*c*〉–|

*b*〉. In the latter case, a dressing laser is required to coherently couple the quantum states |

*c*〉 and |

*b*〉. Under proper conditions, the transition paths interfere destructively and a spectrally narrowband transmission window opens up within the broadband absorption line.

10. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. **101**, 047401 (2008). [CrossRef] [PubMed]

11. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials **8**, 758–762 (2009). [CrossRef] [PubMed]

*α*-lactose monohydrate. In this proof-of-principle experiment, HIT is observed due to the coherent coupling of a broadband mode of the SRRs to a narrowband mode resonance of

*α*-lactose. Although here we restrain ourselves to the hybridization of a metamaterial and an atomic/molecular system, it is important to notice that HIT is a general effect that is based on the mode hybridization of a set of oscillators. Hence, the atomic system could be represented by a wide range of solids, fluids and gaseous materials and could open new routes for the investigation of the coupling between metamaterials and ultracold gases. Moreover, the atomic system could be substituted by quantum structures [20

20. C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science **327**, 1495–1497 (2010). [CrossRef] [PubMed]

21. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express **18**, 23633–23645 (2010). [CrossRef] [PubMed]

22. D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express **19**, 13700–13706 (2011). [CrossRef] [PubMed]

23. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature **471**, 204–208 (2011). [CrossRef] [PubMed]

24. F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C **114**, 7299–7301 (2010). [CrossRef]

25. D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. **11**, 2104–2108 (2011). [CrossRef] [PubMed]

26. S. Linden, J. Kuhl, and H. Giessen, “Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,” Phys. Rev. Lett. **20**, 4688–4691 (2001). [CrossRef]

28. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials **9**, 707–715 (2010). [CrossRef]

29. B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express **19**, 628–637 (2011). [CrossRef] [PubMed]

## 2. Analytic Model

4. M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express **16**, 19785–19798 (2008). [CrossRef] [PubMed]

*ρ*

_{12}of the plasmonic system and

*ρ*̃

_{13}of the atomic system obey the coupled differential equations Hereby, Δ

_{12}=

*ω*

_{12}–

*ω*and Δ̃

_{13}=

*ω̃*

_{13}–

*ω*denote the detuning between the resonance frequencies

*ω*

_{12},

*ω*̃

_{13}and the excitation frequency

*ω*,

*μ*

_{12}and

*μ*̃

_{13}are the transition dipole moments,

*γ*

_{12}and

*γ*̃

_{13}are the damping constants and

*E*=

_{L}*E*+

_{ext}*κP̃*

_{13}and

*Ẽ*=

_{L}*E*+

_{ext}*κP*

_{12}are the local electric fields that are induced by the external electric field

*E*and the mutually excited polarizations

_{ext}*P*and

*P̃*. The parameter

*κ*describes the coupling strength between the plasmonic and atomic oscillators. The macroscopic polarizations can be calculated by

*N*and

*Ñ*describe the number densities of plasmonic and atomic oscillators. From the solutions of Eqs. (1)–(4) and by homogenizing the composed system by a simplified Maxwell-Garnett approach, we obtain for the complex susceptibility

*χ*of the composed system: For simplification of the following discussion, it is justified to assume that

*ω*

_{12}≈

*ω̃*

_{13}, which means that the resonance frequencies of the transitions |1〉 → |2〉 and |1〉 → |3〉 are approximately equal. From the steady-state solutions of (1) and (2) we obtain by applying (5) for the imaginary part of the susceptibility

*χ*″ at frequency

*ω*

_{12}≈

*ω*̃

^{13}for Δ

_{12}= Δ̃

_{13}= 0: with

*A*

_{12}, the imaginary part of the susceptibility

*χ*″ and thus the absorption is reduced to a minimum (I) if

*Ã*

_{13}is maximized and (II) if the coupling constant

*κ*is maximized. In the first case,

*Ã*

_{13}can be maximized by exploiting a spectrally narrowband resonance (

*γ*̃

_{13}small) in the atomic system that overlaps with the broadband resonance of the metamaterial. Fig. 2 shows the real and imaginary part of the susceptibility and the transmission of a hybrid system for two different ratios

*γ̃*

_{13}/

*γ*

_{12}(Figs. 2(a),(b)) and coupling factors (Figs. 2(c),(d)) which confirm the discussed behavior.

## 3. Experiment and Simulation

*α*-lactose monohydrate and the broadband resonance of an array of SRRs in a proof-of-principle experiment.

*α*-lactose exhibits a spectrally narrowband, strong resonance at a frequency of 0.53 THz [30

30. D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters **440**, 203–209 (2007). [CrossRef]

31. E. Brown, J. Bjarnson, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. **90**, 061908 (2007). [CrossRef]

32. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics **12**, 043017 (2010). [CrossRef]

*μ*m thick benzocyclobutene (BCB) substrate. The SRRs had a thickness of 200 nm, a side length of 58

*μ*m and the split gap was 7

*μ*m. The unit cells were arrayed with a periodicity of 75

*μ*m. For studying the coupling between the SRR metamaterial and an atomic system, we coated the SRRs with a 50

*μ*m thick layer of

*α*-lactose. To obtain a thin lactose film we diluted

*α*-lactose powder in a saturated aqueous solution and deposited it on top of the metamaterial. To accelerate the crystallization process, we heated the sample to a temperature of 90° C, thus minimizing mutarotation of lactose from the

*α*to the

*β*anomeric form [33

33. R. Lefort, V. Caron, J.-F. Willart, and M. Descamps, “Mutarotational kinetics and glass transition of lactose,” Solid State Comm. **140**, 329–334 (2006). [CrossRef]

*α*-lactose by 3D full wave simulations based on a Finite Integration Technique in the frequency domain (CST Microwave Studio). In the model, the gold SRRs were described as lossy metal. The permittivity of the BCB was 2.67 with a loss tangent tan

*δ*= 0.1. The geometric dimensions of the SRRs were identical to the experimental values. We described the permittivity of the narrowband absorption resonance of

*α*-lactose by a Lorentz-model Hereby,

*ɛ*denotes the off-resonance background permittivity of lactose,

_{b}*ω*̃

_{13}is the resonance frequency of the transition,

*γ*̃

_{13}is the damping factor and

*b̃*

_{13}is the oscillator strength per s

^{2}. We obtained a value of

*ɛ*= 3.01 and a resonance frequency

_{b}*ω*̃

_{13}= 2

*π*· 0.53 THz from spectroscopic measurements of

*α*-lactose on a BCB substrate. From the spectral width of the absorption line of

*α*-lactose we deduced a damping factor of the resonance

*γ*̃

_{13}= 1.59 · 10

^{11}s

^{−1}, whereas we employed the lactose density dependent oscillator strength per s

^{2}as a free parameter to fit the simulation results to the experimental data. From this optimization we obtained a value

*b̃*

_{13}= 2.24 · 10

^{23}s

^{−2}.

*κ*to fit the analytic transmission spectrum to the experimental data. As can be seen from Fig. 3(d), the analytic model accurately describes the transmission spectrum of the composite metamaterial/lactose system. Since the model is based on coherent coupling of the hybridized local fields of a metamaterial and an atomic system, the good agreement with the experimental measurements and the numerical simulations provides a convincing proof of HIT. Although only demonstrated for a specific proof-of-principle experiment, HIT is a general effect that describes coherent coupling in hybrid structures composed of plasmonic and atomic oscillators. Since – in principle – the optical properties of the plasmonic system and the atomic system can be designed almost independently, HIT provides an enormous freedom for the deliberate design of optical systems with tailored dispersion.

35. J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie **50**, 2085–2089 (2011). [CrossRef] [PubMed]

## 4. Conclusion

*α*-lactose monohydrate. The results were substantiated by numerical full wave simulations. HIT is a general effect that can be exploited for tailoring the dispersion of optical systems that consist of a mixture of plasmonic and atomic elements at will.

## Acknowledgments

## References and links

1. | A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. |

2. | E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New Journal of Physics |

3. | N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photonics |

4. | M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express |

5. | S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature |

6. | H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature |

7. | H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express |

8. | O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express |

9. | D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science |

10. | S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. |

11. | N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials |

12. | N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science |

13. | A. Artar, A. A. Yanik, and H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. |

14. | S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express |

15. | S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics |

16. | N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics |

17. | S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New Journal of Physics |

18. | K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. |

19. | M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. |

20. | C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science |

21. | X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express |

22. | D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express |

23. | J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature |

24. | F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C |

25. | D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett. |

26. | S. Linden, J. Kuhl, and H. Giessen, “Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,” Phys. Rev. Lett. |

27. | T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B |

28. | B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials |

29. | B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express |

30. | D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters |

31. | E. Brown, J. Bjarnson, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. |

32. | A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics |

33. | R. Lefort, V. Caron, J.-F. Willart, and M. Descamps, “Mutarotational kinetics and glass transition of lactose,” Solid State Comm. |

34. | C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. |

35. | J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie |

**OCIS Codes**

(160.4760) Materials : Optical properties

(220.4000) Optical design and fabrication : Microstructure fabrication

(270.1670) Quantum optics : Coherent optical effects

(160.3918) Materials : Metamaterials

(230.4555) Optical devices : Coupled resonators

(300.6495) Spectroscopy : Spectroscopy, teraherz

**ToC Category:**

Metamaterials

**Citation**

Peter Weis, Juan Luis Garcia-Pomar, René Beigang, and Marco Rahm, "Hybridization Induced Transparency in composites of metamaterials and atomic media," Opt. Express **19**, 23573-23580 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23573

Sort: Year | Journal | Reset

### References

- A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett.91, 037401 (2003). [CrossRef] [PubMed]
- E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New Journal of Physics12, 093010 (2010). [CrossRef]
- N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photonics2, 351–354 (2008). [CrossRef]
- M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express16, 19785–19798 (2008). [CrossRef] [PubMed]
- S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466, 735–738 (2010). [CrossRef] [PubMed]
- H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006). [CrossRef] [PubMed]
- H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express32, 1620–1622 (2007).
- O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express17, 819–827 (2009). [CrossRef] [PubMed]
- D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
- S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008). [CrossRef] [PubMed]
- N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials8, 758–762 (2009). [CrossRef] [PubMed]
- N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332, 1407–1410 (2011). [CrossRef] [PubMed]
- A. Artar, A. A. Yanik, and H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett.11, 1685–1689 (2011). [CrossRef] [PubMed]
- S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express19, 15363–15370 (2011). [CrossRef] [PubMed]
- S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics13, 023034 (2011). [CrossRef]
- N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics3, 157–162 (2009). [CrossRef]
- S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New Journal of Physics9, 45 (2007). [CrossRef]
- K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991). [CrossRef] [PubMed]
- M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005). [CrossRef]
- C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science327, 1495–1497 (2010). [CrossRef] [PubMed]
- X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express18, 23633–23645 (2010). [CrossRef] [PubMed]
- D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express19, 13700–13706 (2011). [CrossRef] [PubMed]
- J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature471, 204–208 (2011). [CrossRef] [PubMed]
- F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C114, 7299–7301 (2010). [CrossRef]
- D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett.11, 2104–2108 (2011). [CrossRef] [PubMed]
- S. Linden, J. Kuhl, and H. Giessen, “Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,” Phys. Rev. Lett.20, 4688–4691 (2001). [CrossRef]
- T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80, 195415 (2009).
- B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials9, 707–715 (2010). [CrossRef]
- B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express19, 628–637 (2011). [CrossRef] [PubMed]
- D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters440, 203–209 (2007). [CrossRef]
- E. Brown, J. Bjarnson, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett.90, 061908 (2007). [CrossRef]
- A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics12, 043017 (2010). [CrossRef]
- R. Lefort, V. Caron, J.-F. Willart, and M. Descamps, “Mutarotational kinetics and glass transition of lactose,” Solid State Comm.140, 329–334 (2006). [CrossRef]
- C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005). [CrossRef] [PubMed]
- J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie50, 2085–2089 (2011). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.