OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24252–24257
« Show journal navigation

Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides

Yicun Yao, Ningning Dong, Feng Chen, Lilong Pang, Zhiguang Wang, and Qingming Lu  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24252-24257 (2011)
http://dx.doi.org/10.1364/OE.19.024252


View Full Text Article

Acrobat PDF (824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication of planar waveguide in Nd:YVO4 crystal by using swift Ar8+ ion irradiation. At room temperature continuous wave (cw) laser oscillation at wavelength of ~1067 nm has been realized through the optical pump at 808 nm with a low threshold of 9.3 mW. The slope efficiency of the waveguide laser system is of 8.5%. The optical-to-optical conversion efficiency is 6.6%.

© 2011 OSA

1. Introduction

As one of the most favorite gain media, neodymium-doped yttrium vanadate (Nd:YVO4) has been widely used in solid state laser systems owing to its many excellent features, such as high emission cross section, broad absorption bands, excellent thermal and mechanical properties [1

1. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer, New York, 1990).

,2

2. P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173(1-6), 315–321 (2000). [CrossRef]

]. Optical waveguides restrict light propagation in reduced volumes and lead to high intensities inside the structures; as a consequence, waveguide lasers are with lower lasing thresholds than that of the bulk laser systems [3

3. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998). [CrossRef]

8

8. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010). [CrossRef]

]. In addition, the laser elements based on waveguides benefit from the small scales of the structures, which enables further integration for the construction of multiple functional devices for diverse photonic applications.

Waveguide structures have been fabricated in Nd:YVO4 crystals by several techniques such as ion implantation [9

9. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3-4), 165–182 (2008). [CrossRef]

13

13. X. H. Liu, S. M. Zhang, J. H. Zhao, M. Chen, B. G. Peng, X. F. Qin, and K. M. Wang, “Optical properties of a single mode planar waveguide in Nd:YVO4 fabricated by multienergy He ion implantation,” Appl. Opt. 50(21), 3865–3870 (2011). [CrossRef] [PubMed]

], thermal diffusion [14

14. A. Benayas, D. Jaque, S. J. Hettrick, J. S. Wilkinson, and D. P. Shepherd, “Investigation of neodymium-diffused yttrium vanadate waveguides by confocal microluminescence,” J. Appl. Phys. 103(10), 103104 (2008). [CrossRef]

,15

15. S. J. Hettrick, J. S. Wilkinson, and D. P. Shepherd, “Neodymium and gadolinium diffusion in yttrium vanadate,” J. Opt. Soc. Am. B 19(1), 33 (2002). [CrossRef]

], and femtosecond laser inscription [16

16. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010). [CrossRef] [PubMed]

], and the integrated lasers have been realized in some of the samples [17

17. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119 (2010). [CrossRef]

,18

18. M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B 94(2), 215–219 (2009). [CrossRef]

]. Recently, the swift heavy ion irradiation has emerged as a powerful method to modulate the refractive index of optical materials and to form waveguides. In such processes, high-energy (energies larger than 1 MeV/amu) heavy ions (e.g., F, Cl, Ar) are incident into the optical materials to modify the surface properties of the substrates. Differently from the traditional light ion implantation (H and He) where nuclear collisions between incident ions and target atoms play a main role, the electronic excitations are dominant over nuclear damage, which is responsible for the refractive index changes of the irradiated materials. The electronic stopping power (Se) is one of the key parameters to determine the electronic damage and the induced refractive index change [19

19. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005). [CrossRef]

,20

20. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007). [CrossRef] [PubMed]

]. When Se is close to the material-dependent threshold value, a single ion impact will created partial or complete amorphous volume, and hence induces considerable refractive index changes along ion trajectories [21

21. Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010). [CrossRef] [PubMed]

,22

22. A. Rivera, M. L. Crespillo, J. Olivares, G. García, and F. Agulló-López, “Effect of defect accumulation on ion-beam damage morphology by electronic excitation in lithium niobate: a MonteCarlo approach,” Nuclear Instrum. Methods Phy. Res. Sect. B Beam Interactions Mater. Atoms 268(13), 2249–2256 (2010). [CrossRef]

]. There is a remarkable advantage of swift heavy ion irradiation over the normal ion implantation for waveguide formation of optical materials, that is, the conspicuous reduced irradiation fluence. While the fluences generally used in light ion implantation are 1016~1017 cm−2 and 1014~1015 cm−2 for normal heavy ion implantation, fluences at the level of 1012 cm−2 are adequate for swift heavy ion irradiation processes to confine light propagation in the irradiation region when the Se is above the damage threshold [20

20. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007). [CrossRef] [PubMed]

,23

23. P. Kumar, S. Moorthy Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007). [CrossRef]

]. The significantly reduced fluence for waveguide formation by using swift heavy ions results in faster fabrication of the guiding devices. Compared with femtosecond laser inscription, the advantage of swift ion irradiation is the ability of easy production of a large-area circuit planar waveguide layer within very short time. This faster processing makes the swift heavy ion irradiation a promising technology for the possible industrial production. As of yet, researchers have used this technique to fabricate waveguides in a few optical crystals such as LiNbO3, KGW, Nd:YAG and Nd:GdCOB [19

19. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005). [CrossRef]

21

21. Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010). [CrossRef] [PubMed]

,23

23. P. Kumar, S. Moorthy Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007). [CrossRef]

27

27. Y. Ren, Y. Jia, F. Chen, Q. Lu, Sh. Akhmadaliev, and S. Zhou, “Second harmonic generation of swift carbon ion irradiated Nd:GdCOB waveguides,” Opt. Express 19(13), 12490–12495 (2011). [CrossRef] [PubMed]

]. In this paper, we report on the fabrication of planar waveguide in Nd:YVO4, using Ar8+ ions irradiation at energy as high as 180 MeV and low irradiation fluence at 2 × 1012 cm−2. The micro-photoluminescence (μ-PL) and the laser performance of guiding structure have also been investigated.

2. Experimental methods

The Nd:YVO4 crystal (doped by 1mol% Nd3+ ions) used in this work was cut into dimensions of 10(a) × 2(b) × 3(c) mm3 and optically polished. One 10 × 3 mm2 surface was the irradiated surface. The Ar8+ ion irradiation process was carried out by using the facility “HIRFL” at the Institute of Modern Physics, Lanzhou, Chinese Academy of Sciences. The accelerating energy was set at a fixed value of 880 MeV and the fluence was at 2 × 1012 cm−2. Before the Ar8+ ions incident into the Nd:YVO4 crystal, an aluminum foil with proper thickness was used as a mask in order to slow down the incident ions. The ion current density was kept less than 30 nA/cm2 to avoid charging and heating effect of the sample. According to our calculation, the practical irradiation energy reaching on the sample surface was 180 MeV.

The micro-photoluminescence (μ-PL) properties of the waveguides were studied through an Olympus BX-41 fiber-coupled confocal microscope equipped with a 488 nm argon laser. The 488 nm excitation laser was focused onto the cross section by using a 100 × microscope objective with numerical aperture N. A. = 0.95. Then, the back-scattered Nd3+ fluorescence signals were collected with the same objective and, after passing through a series of filters and a confocal pinhole, were collected by a fiber-coupled spectrometer (SPEX500M, USA). The sample was mounted on an XY motorized stage with a high spatial resolution of 100 nm.

Laser operation experiment was also launched by using a typical end-face coupling system [21

21. Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010). [CrossRef] [PubMed]

] at room temperature. Two mirrors (the input one with transmission of 98% at 808 nm and reflectivity >99% at 1064nm and the output one with reflectivity >99% at 808 nm and ~95% at 1064 nm, respectively) were attached the two end-faces of the Nd:YVO4 sample by pressure, respectively, to form the Fabry-Perot laser cavity. A Ti:sapphire cw laser (Coherent 110) was used as the pumping source. The generated 808 nm light beam was focused into the cavity using a convex lens (focus length of 25 mm), and the emission waveguide laser was collected with a 20 × microscope objective lens and imaged by an infrared CCD camera.

3. Results and discussion

The energy deposition process of the swift Ar8+ ions irradiation on Nd:YVO4 was simulated with the software Stopping and Range of Ions in Matter (SRIM) 2010 code [28

28. J. F. Ziegler, computer code at “SRIM & TRIM,” http://www.srim.org.

]. The curves of the electronic and nuclear stopping powers (Se and Sn) as functions of penetration depth of the Ar ions into the Nd:YVO4 are shown in Fig. 1
Fig. 1 The electronic (dashed line) and nuclear stopping power (solid line) curves of 180 MeV Ar ions in Nd:YVO4 crystal as functions of penetration depth from the irradiated sample surface.
as dashed and solid lines, respectively. As we can see, the Se was dominant over Sn in the first 30 μm. The maximum value of Se was 6.9 keV/nm at depth of ~26 μm. While the Sn remained nearly zero in the first 30 μm, and climbed to a peak of about 0.8 keV/nm at depth of 32 μm. This suggests that the electronic damage plays the main role for the possible refractive index changes for the waveguide formation.

In order to obtain a better understanding of the physical mechanism of the Ar8+ ion irradiated Nd:YVO4 waveguide formation, we performed the confocal microscopy to analyze the fluorescence properties. Figure 3(a)
Fig. 3 (a) Typical luminescence spectrum of Nd:YVO4 crystal, (b) 1D spatial scan of the emitted intensity, (c) spectral shift, and (d) spectral broadening of the hyper-sensitive 913.6 nm Nd3+ emission line.
shows the typical confocal luminescence at room temperature obtained from the bulk of the Nd:YVO4 crystal excited by a cw 488 nm argon laser. We focused on this hyper-sensitive 913.6 nm emission line. Figures 3(b), (c) and (d) depict the 1D μ-PL profiles based on the spectral intensity, spectral shift and the spectral broadening of this line, respectively. As we can see, the intensity has a reduction from 7 to 40 μm below the ion irradiated surface of the crystal and the minimum is around 50% of the amplitude of bulk; however, the fluorescence features are well preserved in the first 7 μm depth compare to the bulk. The fluorescence intensity reduction is mainly attributed to lattice damage (lattice defects and imperfections etc.) induced by the electronic collision during the Ar8+ ions irradiation process. As for the spectral broadening, it starts to grow from the beginning of the edge and reaches the maximum of 25 cm−1 at the in-depth distance of 30 μm. The remarkable line broadening suggests the presence of lattice disorder along the ion trajectory. This is in agreement with the lattice defects and imperfections concluded from the luminescence intensity quenching. The position shift profile clearly denotes that the emission line has been shifted to larger energies during the whole ion trajectory. In the first 20 μm, the blue shift is only around 0.6 cm−1 in respect to the bulk; subsequently, the value increases slowly and reaches the maximum of 1.8 cm−1 at the range of 27 μm to 30 μm below the crystal edge.

4. Summary

We have reported on the fabrication of optical planar waveguides in Nd:YVO4 laser crystals, using swift Ar8+ ion irradiation at energy of 180 MeV and fluence of 2 × 1012 cm−2. The waveguide was formed in the electronic damage region, with a maximum ordinary index increase of about 1.5 × 10−2. The μ-PL properties have been modified to some extent, suggesting lattice disorder happened within the ion trajectory. The cw waveguide laser at 1067 nm was realized with a low lasing threshold of 9.3 mW.

Acknowledgments

The work is supported by the National Natural Science Foundation of China (No. 10925524), and the 973 Project (Nos. 2010CB832906 and 2010CB832902) of China.

References and links

1.

A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer, New York, 1990).

2.

P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173(1-6), 315–321 (2000). [CrossRef]

3.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998). [CrossRef]

4.

E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).

5.

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007). [CrossRef]

6.

Ch. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011). [CrossRef]

7.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008). [CrossRef]

8.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010). [CrossRef]

9.

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3-4), 165–182 (2008). [CrossRef]

10.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29(11), 1523–1542 (2007). [CrossRef]

11.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.-M. Lu, C. E. Rüter, and D. Kip, “Optical channel waveguides in Nd:YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88(7), 071123 (2006). [CrossRef]

12.

M. E. Sánchez-Morales, G. V. Vázquez, P. Moretti, and H. Márquez, “Optical waveguides in Nd:YVO4 crystals by multi-implants with protons and helium ions,” Opt. Mater. 29(7), 840–844 (2007). [CrossRef]

13.

X. H. Liu, S. M. Zhang, J. H. Zhao, M. Chen, B. G. Peng, X. F. Qin, and K. M. Wang, “Optical properties of a single mode planar waveguide in Nd:YVO4 fabricated by multienergy He ion implantation,” Appl. Opt. 50(21), 3865–3870 (2011). [CrossRef] [PubMed]

14.

A. Benayas, D. Jaque, S. J. Hettrick, J. S. Wilkinson, and D. P. Shepherd, “Investigation of neodymium-diffused yttrium vanadate waveguides by confocal microluminescence,” J. Appl. Phys. 103(10), 103104 (2008). [CrossRef]

15.

S. J. Hettrick, J. S. Wilkinson, and D. P. Shepherd, “Neodymium and gadolinium diffusion in yttrium vanadate,” J. Opt. Soc. Am. B 19(1), 33 (2002). [CrossRef]

16.

W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010). [CrossRef] [PubMed]

17.

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119 (2010). [CrossRef]

18.

M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B 94(2), 215–219 (2009). [CrossRef]

19.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005). [CrossRef]

20.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007). [CrossRef] [PubMed]

21.

Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010). [CrossRef] [PubMed]

22.

A. Rivera, M. L. Crespillo, J. Olivares, G. García, and F. Agulló-López, “Effect of defect accumulation on ion-beam damage morphology by electronic excitation in lithium niobate: a MonteCarlo approach,” Nuclear Instrum. Methods Phy. Res. Sect. B Beam Interactions Mater. Atoms 268(13), 2249–2256 (2010). [CrossRef]

23.

P. Kumar, S. Moorthy Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007). [CrossRef]

24.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009). [CrossRef]

25.

Y. Y. Ren, N. N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19(6), 5522–5527 (2011). [CrossRef] [PubMed]

26.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. Stewart Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nuclear Instrum. Methods Phy. Res. Sect. B Beam Interactions Mater. Atoms 249(1-2), 177–180 (2006). [CrossRef]

27.

Y. Ren, Y. Jia, F. Chen, Q. Lu, Sh. Akhmadaliev, and S. Zhou, “Second harmonic generation of swift carbon ion irradiated Nd:GdCOB waveguides,” Opt. Express 19(13), 12490–12495 (2011). [CrossRef] [PubMed]

28.

J. F. Ziegler, computer code at “SRIM & TRIM,” http://www.srim.org.

29.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009). [CrossRef]

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

History
Original Manuscript: August 24, 2011
Revised Manuscript: November 7, 2011
Manuscript Accepted: November 11, 2011
Published: November 14, 2011

Citation
Yicun Yao, Ningning Dong, Feng Chen, Lilong Pang, Zhiguang Wang, and Qingming Lu, "Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides," Opt. Express 19, 24252-24257 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24252


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer, New York, 1990).
  2. P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun.173(1-6), 315–321 (2000). [CrossRef]
  3. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B67(2), 131–150 (1998). [CrossRef]
  4. E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).
  5. J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007). [CrossRef]
  6. Ch. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  7. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008). [CrossRef]
  8. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010). [CrossRef]
  9. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci.33(3-4), 165–182 (2008). [CrossRef]
  10. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater.29(11), 1523–1542 (2007). [CrossRef]
  11. F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.-M. Lu, C. E. Rüter, and D. Kip, “Optical channel waveguides in Nd:YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett.88(7), 071123 (2006). [CrossRef]
  12. M. E. Sánchez-Morales, G. V. Vázquez, P. Moretti, and H. Márquez, “Optical waveguides in Nd:YVO4 crystals by multi-implants with protons and helium ions,” Opt. Mater.29(7), 840–844 (2007). [CrossRef]
  13. X. H. Liu, S. M. Zhang, J. H. Zhao, M. Chen, B. G. Peng, X. F. Qin, and K. M. Wang, “Optical properties of a single mode planar waveguide in Nd:YVO4 fabricated by multienergy He ion implantation,” Appl. Opt.50(21), 3865–3870 (2011). [CrossRef] [PubMed]
  14. A. Benayas, D. Jaque, S. J. Hettrick, J. S. Wilkinson, and D. P. Shepherd, “Investigation of neodymium-diffused yttrium vanadate waveguides by confocal microluminescence,” J. Appl. Phys.103(10), 103104 (2008). [CrossRef]
  15. S. J. Hettrick, J. S. Wilkinson, and D. P. Shepherd, “Neodymium and gadolinium diffusion in yttrium vanadate,” J. Opt. Soc. Am. B19(1), 33 (2002). [CrossRef]
  16. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett.35(7), 916–918 (2010). [CrossRef] [PubMed]
  17. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010). [CrossRef]
  18. M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B94(2), 215–219 (2009). [CrossRef]
  19. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett.86(18), 183501 (2005). [CrossRef]
  20. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett.32(17), 2587–2589 (2007). [CrossRef] [PubMed]
  21. Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett.35(19), 3276–3278 (2010). [CrossRef] [PubMed]
  22. A. Rivera, M. L. Crespillo, J. Olivares, G. García, and F. Agulló-López, “Effect of defect accumulation on ion-beam damage morphology by electronic excitation in lithium niobate: a MonteCarlo approach,” Nuclear Instrum. Methods Phy. Res. Sect. B Beam Interactions Mater. Atoms268(13), 2249–2256 (2010). [CrossRef]
  23. P. Kumar, S. Moorthy Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys.102(8), 084905 (2007). [CrossRef]
  24. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009). [CrossRef]
  25. Y. Y. Ren, N. N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express19(6), 5522–5527 (2011). [CrossRef] [PubMed]
  26. A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. Stewart Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nuclear Instrum. Methods Phy. Res. Sect. B Beam Interactions Mater. Atoms249(1-2), 177–180 (2006). [CrossRef]
  27. Y. Ren, Y. Jia, F. Chen, Q. Lu, Sh. Akhmadaliev, and S. Zhou, “Second harmonic generation of swift carbon ion irradiated Nd:GdCOB waveguides,” Opt. Express19(13), 12490–12495 (2011). [CrossRef] [PubMed]
  28. J. F. Ziegler, computer code at “SRIM & TRIM,” http://www.srim.org .
  29. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited