OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24804–24809
« Show journal navigation

Dynamically tuning emission band of CdSe/ZnS quantum dots assembled on Ag nanorod array: plasmon-enhanced Stark shift

Xiao-Niu Peng, Zhang-Kai Zhou, Wei Zhang, and Zhong-Hua Hao  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24804-24809 (2011)
http://dx.doi.org/10.1364/OE.19.024804


View Full Text Article

Acrobat PDF (1523 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate tuning emission band of CdSe/ZnS semiconductor quantum dots (SQDs) closely-packed in the proximity of Ag nanorod array by dynamically adjusting exciton-plasmon interaction. Large red-shift is observed in two-photon luminescence (TPL) spectra of the SQDs when the longitudinal surface plasmon resonance (LSPR) of Ag nanorod array is adjusted to close to excitation laser wavelength, and the spectral red-shift of TPL reaches as large as 101 meV by increasing excitation power, which is slightly larger than full width at half-maximum of emission spectrum of the SQDs. The observed LSPR-dependent spectral shifting behaviors are explained by a theoretical model of plasmon-enhanced quantum-confined Stark effect. These observations could find the applications in dynamical information processing in active plasmonic and photonic nanodevices.

© 2011 OSA

1. Introduction

Tuning absorption and emission band of optical nanoemitters has prospective applications in optical information processing, such as optical modulating and switching [1

1. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]

]. Semiconductor quantum dots with tunable energy levels are the solid state “artificial atoms” and the building blocks for quantum information [2

2. L. Bányai and S. W. Koch, Semiconductor Quantum Dots (World Scientific Publishing Co. Pte. Ltd., 1993).

4

4. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011). [CrossRef] [PubMed]

]. Strong surface plasmon resonance (SPR) of metallic nanostructures largely enhances the local field at the excitation and/or emission frequency of optical nanoemitters [5

5. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999). [CrossRef]

7

7. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009). [CrossRef]

], which offers a powerful tool to tune optical properties of optical nanoemitters [8

8. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef] [PubMed]

11

11. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011). [CrossRef] [PubMed]

]. SPR could effectively modulate emission spectrum of multilevel nanoemitters by enhancing resonant transitions and suppressing nonresonant transitions [12

12. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008). [CrossRef] [PubMed]

,13

13. T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009). [CrossRef] [PubMed]

]. Moreover, near-field coherent coupling between plasmon and exciton forms plexciton and generates hybridized absorption band [14

14. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008). [CrossRef] [PubMed]

17

17. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009). [CrossRef]

].

Quantum-confined Stark effect in low-dimensional semiconductor materials due to strong confinement of electron and hole in a bound exciton leads to a prominent power-dependent absorption band shift [18

18. S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997). [CrossRef] [PubMed]

27

27. B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73(5), 053403 (2006). [CrossRef]

]. Plasmon-enhanced Stark shifts in Au/CdSe core/shell nanoparticles have been demonstrated by Zhang et al. [28

28. J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010). [CrossRef] [PubMed]

]. On the one hand, by tuning gap distance of gold nanoparticle dimer to selectively enhance spontaneous emission rate of the favor transitions, shaping emission spectra of multilevel fluorescent molecules is demonstrated by Ringler et al. [12

12. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008). [CrossRef] [PubMed]

]. On the other hand, by tuning nanoparticle size to overlap the favor Raman and plasmon modes, plasmonic control of the Raman spectrum of a single molecule in a gold-silver core-shell nanoparticle dimer is reported by Dadosh et al. [13

13. T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009). [CrossRef] [PubMed]

]. Interestingly, spectral narrowing and red-shifting of CdSe/ZnS semiconductor quantum dots (SQDs) on the Ag island film is observed by Soganci et al. [29

29. I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express 15(22), 14289–14298 (2007). [CrossRef] [PubMed]

], but the detailed mechanism of spectral narrowing and shifting is unclear.

In this paper, we investigate power-dependent red-shift of two-photon luminescence (TPL) of CdSe/ZnS SQDs in the proximity of Ag nanorods (AgNRs) array, optimize spectral red-shift by tuning longitudinal surface plasmon resonances of the AgNRs array, then discuss the underlying physics processes, i.e. plasmon-enhanced quantum-confined Stark effect.

2. Synthesis and characterization

Our arrayed AgNRs were grown by using anodic aluminum oxide (AAO). AAO templates were fabricated by using a two-step anodization process [30

30. Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010). [CrossRef] [PubMed]

]. The anodization voltage was stepwise reduced from 19 V down to 6 V to decrease the thickness of Al2O3 barrier layer. Silver nanorods were deposited in the pores of AAO templates by alternating current electrolysis (50 Hz, 5 V ac) in an electrolyte containing AgNO3 (0.03 M) and H2SO4 acid (0.03 M) with a Pt counter electrode. The CdSe/ZnS core-shell SQDs were purchased from Invitrogen Corporation and drop-coated onto the barrier layer of AAO template. The diameter of SQDs is 13.4 ± 0.7 nm [31

31. H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007). [CrossRef] [PubMed]

].

The AAO templates loaded with AgNRs were etched by a precise Ar ion polishing system (Gatan PIPS Model 691) and examined by scanning electron microscopy (SEM). The SEM was performed by using a FEG SEM Sirion 200 operated at an accelerating voltage of 25.0 kV. The TEM was performed by using a JEOL 2010HT operated at 100 kV. The absorption spectra were recorded by a UV-VIS-NIR spectrophotometer (Varian Cary 5000) by using a p-polarized source with an incident angle of approximate 80°. The excitation source for the measurements of SQDs TPL was generated by a mode lock Ti:sapphire laser (Mira 900, Coherent) with a pulse width approximate 3 ps and a repetition rate of 76 MHz, and the excitation wavelength was set to 804 nm. The laser scattering noise was blocked by a band pass filter. A lens with 70 mm focal-length was used to focus laser beam onto the sample. The incident angle of laser beam was approximately 80° and the area of focus spot on the sample was about 1.32 × 10−3 mm2. The TPL from the sample was collected by reflection measurement, filtered by a couple filters and recorded by spectrometry (Spectrapro 2500i, Acton) with a liquid-nitrogen-cooled CCD (SPEC-10, Princeton). All the TPL measurements in the report were carried out at room temperature (~25°C).

3. Results and discussion

Figure 1
Fig. 1 Nanostructures and absorption spectra of samples. (a) Schematic of SQD-AgNR nanocomplex. (b) SEM image of the AAO template loaded with AgNRs at the barrier layer side. (c) TEM image of the AgNRs with λLSPR = 700 nm. (d) Absorption spectra (θin = 80°) of AgNR arrays with λLSPR = 650, 670, 700, 710, 755 and 795 nm.
presents the nanostructures and absorption spectra of samples. Figure 1(a) illustrates the side view sketch of the AgNR array and CdSe/ZnS quantum dots nanocomplex. The thickness of alumina barrier layer (Δ) is about 7 nm. Figure 1(b) shows the SEM image of the AAO template loaded with AgNRs at the barrier side, with the thin Al2O3 barrier layer being removed by a precise Ar ion polishing system (Gatan PIPS Model 691). The diameter dAg and period of the AgNRs is about 18 ± 3 nm and 45 ± 4 nm. The TEM image of the AgNRs with λLSPR = 700 nm is shown in Fig. 1(c), and the length lAg is measured to be about 90 nm. The length of AgNRs is adjusted conveniently by varying the growth time tg, and as a consequence the different LSPR peaks are obtained in the AgNR array nanosystem [30

30. Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010). [CrossRef] [PubMed]

]. Figure 1(d) presents the absorption spectra of the AgNR arrays with λLSPR = 650, 670, 700, 710, 755 and 795 nm. The recorded incident angle (θin) is approximately 80°, and the oscillations in the absorption spectra are attributed to the surface interferences of the AAO templates.

Figure 3
Fig. 3 TPL spectra of SQD-AgNR nanocomplex with λLSPR = 555, 577, 610, 650, 670, 700, 710, 755, and 795 nm, the excitation power is fixed at 65 mW.
gives the normalized TPL spectra of the SQD-AgNR nanocomplex recorded at a fixed excitation power 65 mW. The LSPR wavelengths of the AgNR arrays are 555, 577, 610, 650, 670, 700, 710, 755, and 795 nm, respectively. It clearly shows that the TPL peak is tuned from 665 nm to 710 nm by adjusting LSPR of the AgNRs array from 555 nm to 795 nm with a fixed excitation power.

Power-dependent TPL peak wavelength of the SQD-AgNR nanocomplex are plotted in Fig. 4
Fig. 4 Peak emission wavelength of the SQD-AgNR nanocomplex as a function of excitation power. Here, LSPR wavelengths of the AgNR arrays are 577, 610, 650, 670, 700 and 795 nm.
, which clearly shows that the spectral redshift of SQD-AgNR nanocomplex is approximately proportional to the excitation power Pexc when Pexc is not too strong. The nanocomplex with shorter AgNRs (smaller λLSPR and far off-resonance to laser wavelength λlaser) has a smaller spectral shift. The spectral shift becomes saturated at strong excitation region (Pexc > 35 mW) in the nanocomplex with λLSPR = 795 nm, which is very close to excitation laser wavelength (λlaser = 804 nm), and the emission peak changes from 664 nm (1.867 eV) to 702 nm (1.764 eV) with a shift as large as about 38 nm (101 meV). Also, it is observed that the emission peak of SQDs on AAO template without AgNRs almost remains stable (shifts about 1.6 nm).The observed spectral shift in the weak excitation region are approximately summarized by the relationship
ΔλΔλ0+RShiftPexc
(1)
where RShift is the rate of spectral shifting, which becomes larger when λLSPR becomes close to λlaser. Δλ0 is a power-independent spectral shift caused by plasmon-mediated Förster resonant energy transfer (FRET) betweem the closely packed SQDs with a size distribution [33

33. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticle,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]

,34

34. M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008). [CrossRef]

]. Δλ0 of SQDs assembly in the absence of AgNRs array is supposed to be zero. Note that RShift of the controlled SQDs sample is only about 0.024 nm/mW, while RShift of the SQD-AgNR nanocomplex with λLSPR = 795 nm reaches as faster as 0.81 nm/mW. It means that spectral shifting rate of CdSe/ZnS SQDs is enhanced about 34 times by the AgNRs array.

We turn to theoretical analysis of the underlying physics mechanism of LSPR-dependent spectral shift in our SQD-AgNR nanocomplex. The Stark shift of spectral lines is enhanced by bound excitons in semiconductor nanostructures due to quantum confinement. The electron and hole confined in bound excitons are pulled in the opposite direction by the applied electric field. Strong light-matter coupling could also leads to Stark shift, and the amount of shift ΔEStark is proportional to the local light intensity |Elocal|2 [18

18. S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997). [CrossRef] [PubMed]

,28

28. J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010). [CrossRef] [PubMed]

,35

35. A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms,” Phys. Rev. A 66(4), 045401 (2002). [CrossRef]

]. Plasmon resonance significantly enhances quantum-confined Stark effect due to strong enhancement of local field. Moreover, strong plasmon-exciton coupling may result in boexcitonic interaction which can induce the spectral redshift [36

36. M. A. Mahmoud, A. J. Poncheri, R. L. Phillips, and M. A. El-Sayed, “Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethynylene) fluorescent polymer by Ag nanocubes,” J. Am. Chem. Soc. 132(8), 2633–2641 (2010). [CrossRef] [PubMed]

39

39. D. Hulin and M. Joffre, “Excitonic optical Stark redshift: the biexciton signature,” Phys. Rev. Lett. 65(27), 3425–3428 (1990). [CrossRef] [PubMed]

]; the formula of Stark shift is modified as

ΔEStarkPexc(ωLaserωLSPR)2+γ2
(2)

where 1/[(ωLaserωLSPR)2+γ2] represents the dispersion behavior of the local field enhancement factor |f|2, γ is a damping factor, ωLaser and ωLSPR are the optical frequency of laser pulses and LSPR of the AgNR array, respectively. Equation (2) well explains observed behaviors of the spectral shift: (i) ΔλStark (= ΔλStark – Δλ0) is proportional to excitation power Pexc; and (ii) ΔλStark saturates when ωLSPR is close to ωLaser. The spectral shifting rate can be calculated from the relation

RShift=ΔEStarkPexc=A(ωLaserωLSPR)2+γ2
(3)

The experimental data and theoretical fitting curve of RShift as a function of λLSPR of AgNRs array are plotted in Fig. 5
Fig. 5 Spectral shifting rate RShift of the SQD-AgNR nanocomplex as a function of LSPR wavelength of the AgNRs array.
, in which, the fitting parameters γ = 0.445 meV. One can see that the theoretical fitting coincide with the experimental data very well. Based on these experimental observations and theoretical analysis, we think that the giant spectral red-shift in SQD-AgNR nanocomplex is mainly attributed to the plasmon-enhanced quantum-confined effect.

4. Conclusion

In summary, we found giant dynamically red-shifting of TPL of CdSe/ZnS SQDs closely-packed in the proximity of Ag nanorods array. By tuning LSPR of AgNR arrays to close to the excitation laser wavelength, the spectral red-shift reaches approximately 101 meV, which is slightly larger than the FWHM of the emission spectrum of the CdSe/ZnS SQDs. LSPR-dependent shifting rate RShift of the SQD-AgNR nanocomposite is well explained by plasmon-enhanced quantum-confined Stark effect. These observations could find the applications in plasmon-based information processing nanodevices, such as optical modulating and switching.

Acknowledgments

This work was supported in part by NSFC (10874134, 10874020), National Basic Research Program of China (2011CB922200, 2010CB923200), Key Project of Ministry of Education of China (708063), and the Fundamental Research Funds for the Central Universities (20102020101000025).

References and links

1.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]

2.

L. Bányai and S. W. Koch, Semiconductor Quantum Dots (World Scientific Publishing Co. Pte. Ltd., 1993).

3.

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005). [CrossRef] [PubMed]

4.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011). [CrossRef] [PubMed]

5.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999). [CrossRef]

6.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]

7.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009). [CrossRef]

8.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef] [PubMed]

9.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]

10.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010). [CrossRef]

11.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011). [CrossRef] [PubMed]

12.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008). [CrossRef] [PubMed]

13.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009). [CrossRef] [PubMed]

14.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008). [CrossRef] [PubMed]

15.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11(6), 2318–2323 (2011). [CrossRef] [PubMed]

16.

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008). [CrossRef] [PubMed]

17.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009). [CrossRef]

18.

S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997). [CrossRef] [PubMed]

19.

M. E. Flatté, A. A. Kornyshev, and M. Urbakh, “Giant Stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18212–18214 (2008). [CrossRef] [PubMed]

20.

M. Joffre, D. Hulin, A. Migus, and M. Combescot, “Laser-induced exciton splitting,” Phys. Rev. Lett. 62(1), 74–77 (1989). [CrossRef] [PubMed]

21.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett. 103(21), 217402 (2009). [CrossRef] [PubMed]

22.

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008). [CrossRef] [PubMed]

23.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999). [CrossRef]

24.

K. C. Je, H. Ju, M. Treguer, T. Cardinal, and S. H. Park, “Local field-induced optical properties of Ag-coated CdS quantum dots,” Opt. Express 14(17), 7994–8000 (2006). [CrossRef] [PubMed]

25.

G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, “Quantum-confined Stark effects in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 52(8), 5913–5922 (1995). [CrossRef] [PubMed]

26.

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations,” Phys. Rev. Lett. 92(15), 157401 (2004). [CrossRef] [PubMed]

27.

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73(5), 053403 (2006). [CrossRef]

28.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010). [CrossRef] [PubMed]

29.

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express 15(22), 14289–14298 (2007). [CrossRef] [PubMed]

30.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010). [CrossRef] [PubMed]

31.

H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007). [CrossRef] [PubMed]

32.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003). [CrossRef]

33.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticle,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]

34.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008). [CrossRef]

35.

A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms,” Phys. Rev. A 66(4), 045401 (2002). [CrossRef]

36.

M. A. Mahmoud, A. J. Poncheri, R. L. Phillips, and M. A. El-Sayed, “Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethynylene) fluorescent polymer by Ag nanocubes,” J. Am. Chem. Soc. 132(8), 2633–2641 (2010). [CrossRef] [PubMed]

37.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010). [CrossRef] [PubMed]

38.

M. Combescot and R. Combescot, “Optical Stark effect of the exciton: biexcitonic origin of the shift,” Phys. Rev. B Condens. Matter 40(6), 3788–3801 (1989). [CrossRef] [PubMed]

39.

D. Hulin and M. Joffre, “Excitonic optical Stark redshift: the biexciton signature,” Phys. Rev. Lett. 65(27), 3425–3428 (1990). [CrossRef] [PubMed]

OCIS Codes
(020.6580) Atomic and molecular physics : Stark effect
(160.6000) Materials : Semiconductor materials
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: September 14, 2011
Revised Manuscript: November 9, 2011
Manuscript Accepted: November 10, 2011
Published: November 18, 2011

Citation
Xiao-Niu Peng, Zhang-Kai Zhou, Wei Zhang, and Zhong-Hua Hao, "Dynamically tuning emission band of CdSe/ZnS quantum dots assembled on Ag nanorod array: plasmon-enhanced Stark shift," Opt. Express 19, 24804-24809 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24804


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1(7), 402–406 (2007). [CrossRef]
  2. L. Bányai and S. W. Koch, Semiconductor Quantum Dots (World Scientific Publishing Co. Pte. Ltd., 1993).
  3. Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett.95(18), 187404 (2005). [CrossRef] [PubMed]
  4. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett.106(2), 020501 (2011). [CrossRef] [PubMed]
  5. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999). [CrossRef]
  6. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006). [CrossRef] [PubMed]
  7. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  8. H. A. Atwater, “The promise of plasmonics,” Sci. Am.296(4), 56–62 (2007). [CrossRef] [PubMed]
  9. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  10. Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics4(1), 50–54 (2010). [CrossRef]
  11. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10(8), 631–636 (2011). [CrossRef] [PubMed]
  12. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett.100(20), 203002 (2008). [CrossRef] [PubMed]
  13. T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano3(7), 1988–1994 (2009). [CrossRef] [PubMed]
  14. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008). [CrossRef] [PubMed]
  15. A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett.11(6), 2318–2323 (2011). [CrossRef] [PubMed]
  16. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett.8(7), 2106–2111 (2008). [CrossRef] [PubMed]
  17. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79(24), 241404 (2009). [CrossRef]
  18. S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science278(5346), 2114–2117 (1997). [CrossRef] [PubMed]
  19. M. E. Flatté, A. A. Kornyshev, and M. Urbakh, “Giant Stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters,” Proc. Natl. Acad. Sci. U.S.A.105(47), 18212–18214 (2008). [CrossRef] [PubMed]
  20. M. Joffre, D. Hulin, A. Migus, and M. Combescot, “Laser-induced exciton splitting,” Phys. Rev. Lett.62(1), 74–77 (1989). [CrossRef] [PubMed]
  21. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett.103(21), 217402 (2009). [CrossRef] [PubMed]
  22. X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett.101(22), 227401 (2008). [CrossRef] [PubMed]
  23. C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett.82(15), 3112–3115 (1999). [CrossRef]
  24. K. C. Je, H. Ju, M. Treguer, T. Cardinal, and S. H. Park, “Local field-induced optical properties of Ag-coated CdS quantum dots,” Opt. Express14(17), 7994–8000 (2006). [CrossRef] [PubMed]
  25. G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, “Quantum-confined Stark effects in semiconductor quantum dots,” Phys. Rev. B Condens. Matter52(8), 5913–5922 (1995). [CrossRef] [PubMed]
  26. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations,” Phys. Rev. Lett.92(15), 157401 (2004). [CrossRef] [PubMed]
  27. B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A73(5), 053403 (2006). [CrossRef]
  28. J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature466(7302), 91–95 (2010). [CrossRef] [PubMed]
  29. I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express15(22), 14289–14298 (2007). [CrossRef] [PubMed]
  30. Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano4(9), 5003–5010 (2010). [CrossRef] [PubMed]
  31. H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett.7(6), 1711–1716 (2007). [CrossRef] [PubMed]
  32. G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett.83(17), 3555–3557 (2003). [CrossRef]
  33. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticle,” Phys. Rev. B76(12), 125308 (2007). [CrossRef]
  34. M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys.10(10), 105011 (2008). [CrossRef]
  35. A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms,” Phys. Rev. A66(4), 045401 (2002). [CrossRef]
  36. M. A. Mahmoud, A. J. Poncheri, R. L. Phillips, and M. A. El-Sayed, “Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethynylene) fluorescent polymer by Ag nanocubes,” J. Am. Chem. Soc.132(8), 2633–2641 (2010). [CrossRef] [PubMed]
  37. H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano4(8), 4571–4578 (2010). [CrossRef] [PubMed]
  38. M. Combescot and R. Combescot, “Optical Stark effect of the exciton: biexcitonic origin of the shift,” Phys. Rev. B Condens. Matter40(6), 3788–3801 (1989). [CrossRef] [PubMed]
  39. D. Hulin and M. Joffre, “Excitonic optical Stark redshift: the biexciton signature,” Phys. Rev. Lett.65(27), 3425–3428 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited